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1 Introduction

In many over-the-counter (OTC) markets, dealer banks provide liquidity through their willingness

to hold inventory: they absorb assets onto their balance sheets when investors need to sell quickly,

and they use these assets to fulfill investors’ buy orders without delay. After the Global Financial

Crisis (GFC) of 2007-2008, several regulations were introduced that increased the cost to dealers of

holding inventory.1 Not surprisingly, dealers responded by reducing their inventory holdings. For

instance, according to data from the Flow of Funds, the share of outstanding corporate bonds and

non-agency mortgage-backed securities held by broker-dealers fell from 2-3% in 2006 to less than

1% in 2018.2 At the same time, both market participants and academics alike argued that post-GFC

regulations posed a threat to market liquidity.3 Since maintaining liquid financial markets is crucial

for a well-functioning economy, understanding and quantifying the effects of post-GFC regulations

on market liquidity and welfare has emerged as a central challenge.

In this paper, we develop a structural model of dealer-intermediated OTC markets in order to

meet this challenge. Our starting point is the benchmark search-theoretic framework developed by

Duffie, Gârleanu, and Pedersen (2005) and extended to allow for arbitrary preferences and asset

holdings by Lagos and Rocheteau (2009) and Gârleanu (2009). However, a key abstraction in these

papers is that inventories do not play any economic role for market making. Indeed, in these models,

dealers never hold inventory—they merely enable customers to access a frictionless market, for

which they charge a fee. Our innovation is to bring inventories back into market making with a

simple and, arguably, quite natural constraint: we assume that a dealer can only sell to customers the

assets that she currently holds in inventory. As a result of this “inventory-in-advance” constraint,

a central feature of our model is that dealers choose an optimal amount of inventory in order to

provide liquidity to their customers. Technically, this model is more difficult to analyze than its

1These regulations include the 2010 Basel III framework, which introduced enhanced capital and liquidity
requirements, along with the so-called “Volcker rule,” which reduced implicit government guarantees (thus increasing
banks’ funding costs) and began monitoring banks’ inventory holdings in concert with the regulation’s ban on proprietary
trading.

2Source: Table L.213 of the Federal Reserve’s Flow of Funds, shown in Figure 6.
3See the extensive discussions by Thakor (2012), Duffie (2017), Bessembinder, Jacobsen, Maxwell, and

Venkataraman (2018), and the many references therein.
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predecessors because it no longer admits closed form solutions. However, using standard recursive

methods, we can characterize the equilibrium and study how dealers’ optimal inventory holdings

depend on various features of the economic environment, such as the frequency and variation

in investors’ preferences—which captures their trading needs—and the flow (dis)utility dealers

receive from holding assets themselves—which captures the effects of regulatory costs imposed by

policymakers. Hence, our model provides a structural framework to evaluate the effects of various

regulatory or technological changes in OTC markets on asset prices, transaction costs, trading

volume, dealers’ profits, and investors’ surplus.

Then, we apply the framework to the secondary market for U.S. corporate bonds, to quantitatively

assess the impact of rising inventory costs associated with post-GFC regulations. The quantitative

analysis proceeds in two steps.

First, using transaction-level data—and focusing on transactions above $1 million made by

institutional investors—we calibrate the model to match several target moments constructed from

the corporate bond market data before the GFC. Given the parameter values implied by our

calibration, we find that the inventory-in-advance constraint had a relatively modest effect on

equilibrium outcomes, relative to an environment where dealers did not face such a constraint. For

example, we find that welfare loss in the equilibrium with inventory constraints is approximately

44% larger than an environment without inventory constraints (but with search and bargaining

frictions). Intuitively, the implied cost of holding inventory before the GFC was relatively small,

and hence dealers held sufficient inventory to fulfill most customer-buy orders in full.

Second, we quantify the implicit cost of regulations to dealers. More specifically, holding all

other structural parameters fixed, we increase dealers’ cost of holding assets to levels consistent

with the aggregate decline in dealers’ inventory observed in the data. We find that dealers’ inventory

costs must increase tenfold, from about 4% to almost 40% of the asset coupon—or, dividing by

1/0.05 = 20, from 0.2% to 2% of the asset5 face value. As a result of this increase in dealers’ balance

sheet costs, our model predicts that trading costs (i.e., bid-ask spreads) rise by approximately 40%
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relative to the pre-GFC benchmark, from 10 to 14 basis points (bps). This represents nearly 80%

of the increase that we observe in our data across the same time periods.

An important advantage of our structural approach is that it allows us to go beyond the analysis

of trading costs and generate additional predictions that would be difficult to make in reduced-form

models. For one, it allows us to measure welfare, which is crucial for distinguishing between

distributional effects—such as shifts in the share of surplus that accrues to dealers vs. customers—

and distortions to the efficient allocation. Indeed, we find that the welfare cost of frictions,

stemming from the combination of search and inventory constraints, increased substantially after

the introduction of post-GFC regulations, from 1.25% to 2.4% of the total gains from trade. Moving

beyond the welfare of investors trading in OTC market, we turn to the cost of capital and calculate

the model-implied change in liquidity yield spread. We find that this spread increased by a factor

of 2.5, going from 2 to 5 bps.

Related literature

Our theory contributes to the the literature that uses search-theoretic models of trade to study OTC

markets. Many of these papers build off of the basic framework developed in Duffie, Gârleanu,

and Pedersen (2005), including the important contributions by Lagos and Rocheteau (2009) and

Gârleanu (2009), who extend the basic framework to accommodate arbitrary preferences and asset

holdings. Importantly, in most papers within this literature, dealers are assumed to have unfettered

access to a frictionless, inter-dealer market, which obviates the need for any dealer to hold inventory.

Such papers include, but are not limited to, Feldhütter (2012), Lester, Rocheteau, and Weill (2015),

Milbradt (2017), Pagnotta and Philippon (2018), and Lagos and Zhang (2020), Kargar, Passadore,

and Silva (2020), Pinter and Üslü (2021), Palleja (2022), and Li (2023). See Weill (2020) for a

thorough review of the literature. Of course, the result that dealers hold no inventories makes these

models more tractable, highlighting the important role of search and bargaining frictions in the

determination of prices and allocations. However, it also makes them ill-suited to study dealers’

incentives to hold inventory and provide liquidity in response to various changes in the economic
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environment, and the consequences for asset prices, transaction costs, trade size, volume, and

welfare.

In the literature on search-based OTC markets, several papers have proposed models of dealers’

inventory management. In Weill (2007) and Lagos, Rocheteau, and Weill (2008), for example,

dealers find it optimal to hold inventories in anticipation of aggregate fluctuations in customers’

demand. However, in both environments, optimal inventory holdings are always zero in the long

run, that is, in the non-stochastic steady state. In our model, inventories play a non-trivial economic

role even in the non-stochastic steady state, which we believe is an important feature for studying

the long-run decline in inventories between 2008 and 2018. Our work is also related to An

(2018), who shows that, despite the presence of holding costs, imperfectly competitive dealers

have incentive to hold inventories in order to gain market power with their customers. Tse and

Xu (2021) also develop a model where dealers (with different trading capacity) carry inventory in

order to rationalize empirical observations about inter-dealer trades in OTC markets. Subsequent

attempts to incorporate inventory into OTC models of trade include Diao, Dudley, and Sun (2023)

and Dyskant, Silva, and Sultanum (2023).

There are also a number of papers in which all agents, including those who play the role of

dealers, trade in decentralized markets. See, e.g., Hugonnier, Lester, and Weill (2020, 2022), Shen,

Wei, and Yan (2021), Üslü (2019), Farboodi, Jarosch, and Shimer (2022), Farboodi, Jarosch, and

Menzio (2017), Bethune, Sultanum, and Trachter (2022), Yang and Zeng (2019), and Nosal, Wong,

and Wright (2019). In these models, since agents face a short-selling constraint, those who play

the role of dealers must hold inventories. Though these models have proven useful in studying

the determinants of inter-dealer market structure and trading patterns, we assume instead that the

inter-dealer market is centralized. This simplification allows us to focus our analysis more squarely

on the issue at hand; to derive new, testable implications regarding, e.g, the relationship between

dealers’ inventory costs and the distribution of trade size.

In addition to our substantive contribution, we also make several methodological contributions.

Indeed, the inventory-in-advance constraint implies that our model no longer admits closed-form
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solutions for the value functions and distributions. Hence, to characterize equilibria, we adapt the

standard recursive methods of Stokey and Lucas (1989) to our environment to formally establish

key properties of the equilibrium. See also Rocheteau, Weill, and Wong (2018) and Choi and

Rocheteau (2021) for related methodological contributions in the New Monetarist literature.

Outside of search-based models, there is also, of course, a celebrated literature on inventory

management by dealers, starting with Amihud and Mendelson (1980), Ho and Stoll (1981, 1983),

and Mildenstein and Schleef (1983). Relative to this literature, our main contribution is to consider

a model in which customers’ supply and demand are derived from explicit, dynamic optimization

problems, subject to search frictions. This enables us to quantify the gains from trade created by

the inter-dealer market, and offer a welfare analysis of post-GFC regulations.

Because of its quantitative focus, our work is also related to papers who structurally estimate

models of OTC markets, either search-based as in Feldhütter (2012), Gavazza (2016), Brancaccio,

Li, and Schurhoff (2017), Hendershott, Li, Livdan, and Schürhoff (2020), Liu (2020), Pinter and

Üslü (2021), Brancaccio and Kang (2022), or network-based as in Gofman (2014, 2017), and

Eisfeldt, Herskovic, Rajan, and Siriwardane (2023). We contribute to this literature by developing

a new model and focusing on a different market phenomena.

Finally, given the focus of our application, our paper is related to several recent empirical studies

that have attempted to identify the effect of post-crisis regulations on market liquidity, including

Trebbi and Xiao (2019), Bao, O’Hara, and Zhou (2018), Bessembinder, Jacobsen, Maxwell, and

Venkataraman (2018), Dick-Nielsen and Rossi (2019), and Choi, Huh, and Shin (2023). By

studying this issue within the context of a structural equilibrium model, our analysis complements

these existing empirical exercises in several important ways. First, by calibrating our model to

match moments before and after the introduction of new regulations, we are able to infer the

implicit cost of these regulations on dealers; this cost is difficult to measure directly and, to the

best of our knowledge, such an estimate is new to the literature. Second, while existing empirical

studies based on difference-in-difference regressions identify “local” effects of new regulations on

a particular measure of liquidity, such as price impact, our model allows us to explore the broader
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implications of policy for the behavior of customers and dealers, and the subsequent implications

for a variety of outcomes, both observable (such as bid-ask spreads, trade size, or volume) and

unobservable (such as the time customers wait to complete their trade). Third, and perhaps most

important, our structural equilibrium model provides natural measures of welfare, along with the

opportunity to perform counterfactuals, which is crucial for evaluating the quantitative impact of

policy.

The remainder of the paper has two parts. In Section 2, we describe the model, show that an

equilibrium exists, and study analytically a number of its properties. In Section 3, we calibrate the

model to the U.S. Corporate Bond market and study the welfare impact of post-GFC regulation.

2 The Model

We consider a continuous time, infinite horizon model of an over-the-counter asset market in the

spirit of Gârleanu (2009) and Lagos and Rocheteau (2009). There are two types of infinitely-lived

agents: a measure of customers normalized to one and a measure 𝜇 > 0 of dealers. There is one

asset that is durable, perfectly divisible, and in fixed supply, 𝑠 > 0.

We assume that customers have stochastically varying preferences defined over the quantity

of asset they hold, and a numéraire consumption good. In particular, let 𝑢(𝑞, 𝛿) + 𝑐 denote a

customer’s flow utility, where 𝑞 ≥ 0 denotes the units of asset the customer holds, 𝛿 denotes

her current preferences for assets, and 𝑐 denotes her net consumption (or production if negative)

of the numéraire good. We assume that 𝑢(𝑞, 𝛿) is strictly increasing and strictly concave in

𝑞 > 0, continuously differentiable, and satisfies the Inada conditions lim𝑞→0 𝑢𝑞 (𝑞, 𝛿) = +∞ and

lim𝑞→∞ 𝑢𝑞 (𝑞, 𝛿) = 0. We also assume that 𝑢𝑞 (𝑞, 𝛿) is strictly increasing in 𝛿, where 𝑢𝑞 denotes the

partial derivative with respect to 𝑞. Hence a larger preference shock 𝛿 creates a stronger demand

for the asset.

Preference shocks arrive at rate 𝛾, at which time a new 𝛿′ is drawn according to the cumulative

distribution function (CDF) 𝐹 (𝛿′).4 We assume that the CDF has support included in some compact
4Micro-foundations for such a specification have been provided earlier in the literature. For example, under
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interval [𝛿, 𝛿] but otherwise make no other restriction; in particular, the CDF can be discrete (as

in, e.g., Lagos and Rocheteau, 2009), continuous, or a mixture of the two. For simplicity, we

assume that dealers have linear preferences that do not change over time: a dealer receives flow

utility 𝑣 𝑞 + 𝑐 from holding 𝑞 units of the asset in inventory and consuming 𝑐 units of the numéraire

good. All agents discount the future at rate 𝑟 > 0.

Dealers have continuous access to a frictionless, competitive market where they can buy or sell

any amount of the asset at price 𝑃 > 0. Customers do not meet each other and trade directly. Instead,

customers meet a randomly chosen dealer at independent Poisson arrival times with intensity 𝜆. If

there are gains from trade, the two bargain over the terms of trade. We denote by 𝜃 ∈ [0, 1] the

dealers’ bargaining power.

Our key departure from the existing literature is an inventory-in-advance constraint: when a

dealer meets a customer, she can buy any quantity of assets from the customer, but she can only

sell assets that she currently holds in inventories. After completing a transaction, a dealer can

then access the inter-dealer market and rebalance her portfolio, either selling the assets she just

accumulated or buying assets to restore an optimal level of inventory.

2.1 Customers

Let 𝑉 (𝑞, 𝛿) denote the maximum attainable expected discounted utility of a customer with current

asset holdings 𝑞 and preferences 𝛿. The Hamilton-Jacobi-Bellman (HJB) equation for 𝑉 (𝑞, 𝛿) can

be written as:

𝑟𝑉 (𝑞, 𝛿) = 𝑢(𝑞, 𝛿) + 𝛾E𝐹 [𝑉 (𝑞, 𝛿′) −𝑉 (𝑞, 𝛿)] + 𝜆 [𝑉 (𝑞′, 𝛿) −𝑉 (𝛿, 𝑞) − 𝑃(𝑞′ − 𝑞) − 𝜙] . (1)

where E𝐹 [·] denotes the expectation with respect to the CDF 𝐹 (𝛿′). The interpretation of the HJB

equation is standard: the customer enjoys the flow utility 𝑢(𝑞, 𝛿) until one of two events occurs.

First, at rate 𝛾, a preference shock arrives, at which time a new 𝛿′ is drawn from 𝐹 (𝛿′). Second,

appropriate specification, 𝑢(𝑞, 𝛿) represents the flow certainty equivalent of holding 𝑞 units of the asset. See Weill
(2020) for a survey.
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at rate 𝜆, the customer has the opportunity to trade with a dealer. At this time, the dealer transfers

𝑞′ − 𝑞 units of the asset in exchange for the payment 𝑃(𝑞′ − 𝑞) + 𝜙. This payment is comprised of

the cost (or revenue) of purchasing (selling) the asset at the inter-dealer price, 𝑃(𝑞′ − 𝑞), plus an

intermediation fee, 𝜙.

A customer in state (𝑞, 𝛿) and a dealer holding 𝑖 ≥ 0 units of the asset choose a pair (𝑞, 𝜙) to

maximize the Nash product

[
𝑉 (𝑞, 𝛿) −𝑉 (𝑞, 𝛿) − 𝑃(𝑞 − 𝑞) − 𝜙

]1−𝜃
𝜙𝜃 ,

subject to the inventory-in-advance constraint

0 ≤ 𝑞 ≤ 𝑞 + 𝑖. (2)

Maximizing with respect to 𝑞 reveals that the optimal post-trade asset holding, 𝑞′, maximizes the

trade surplus,

𝑞′ ∈ arg max𝑉 (𝑞, 𝛿) −𝑉 (𝑞, 𝛿) − 𝑃(𝑞 − 𝑞) (3)

subject to (2). Given the value 𝑞′ that solves this program, the transfer 𝜙 is set so that the dealer

appropriates a fraction 𝜃 of the maximized joint surplus:

𝜙 = 𝜃 [𝑉 (𝑞′, 𝛿) −𝑉 (𝑞, 𝛿) − 𝑃 (𝑞′ − 𝑞)] . (4)

In what follows, we will adopt the usual convention of using a lower case 𝑖 to denote an

individual dealer’s inventory and an upper case 𝐼 to denote the choice of other dealers. Therefore,

in a symmetric, steady-state equilibrium in which 𝑖 = 𝐼, substituting (3) and (4) into the HJB
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equation yields

𝑟𝑉 (𝑞, 𝛿) = 𝑢(𝑞, 𝛿) + 𝛾E𝐹 [𝑉 (𝑞, 𝛿′) −𝑉 (𝑞, 𝛿)]

+ 𝜆(1 − 𝜃) max
0≤𝑞′≤𝑞+𝐼

{𝑉 (𝑞′, 𝛿) −𝑉 (𝑞, 𝛿) − 𝑃 (𝑞′ − 𝑞)} .

Informally differentiating with respect to 𝑞 and applying the envelope condition yields

𝑟𝑉𝑞 (𝑞, 𝛿) = 𝑢𝑞 (𝑞, 𝛿) + 𝛾E𝐹
[
𝑉𝑞 (𝑞, 𝛿′) −𝑉𝑞 (𝑞, 𝛿)

]
+ 𝜆(1 − 𝜃)

[
max

{
𝑉𝑞 (𝑞 + 𝐼, 𝛿), 𝑃

}
−𝑉𝑞 (𝛿, 𝑞)

]
.

Let Σ(𝑞, 𝛿) ≡ 𝑉𝑞 (𝑞, 𝛿) − 𝑃 denote the marginal trade surplus, i.e., the marginal value to a customer

of an additional unit of asset, net of the inter-dealer price. We can rewrite the expression above as

[𝑟 + 𝛾 + 𝜆(1 − 𝜃)] Σ(𝑞, 𝛿) = 𝑢𝑞 (𝛿, 𝑞) − 𝑟𝑃 + 𝛾E𝐹 [Σ(𝑞, 𝛿′)] (5)

+ 𝜆(1 − 𝜃) max {Σ(𝑞 + 𝐼, 𝛿), 0} .

Since equation (5) characterizes Σ(𝑞, 𝛿) for any given (𝑃, 𝐼), it will sometimes be helpful to make

this dependence explicit by writing Σ(𝑞, 𝛿 | 𝑃, 𝐼); otherwise, we will suppress this dependence to

simplify notations. Notice that the environment of Lagos and Rocheteau (2009), where there is no

inventory-in-advance constraint, corresponds to the case where 𝐼 → ∞ and the final term in (5)

disappears. Our first Proposition studies the fixed point equation defined by (5).

Proposition 1. Equation (5) admits a unique, continuous solution Σ(·) that has the following

properties:

1. it is the basis of a solution to the HJB equation (1).

2. it is strictly increasing in 𝛿, strictly decreasing in 𝑞 and 𝑃, and weakly decreasing in 𝐼;

3. for all 𝛿 ∈ [𝛿, 𝛿], lim𝑞→0 Σ(𝑞, 𝛿) = ∞;

4. there exists 𝑞 such that, for all 𝛿 ∈ [𝛿, 𝛿] and 𝑞 > 𝑞, Σ(𝛿, 𝑞) < 0.
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The first point states that a value function 𝑉 (𝑞, 𝛿) solving the HJB equation (1) can be constructed

based on Σ(𝑞, 𝛿); the details are in the appendix. Importantly, the construction confirms that the

envelope condition that we used informally earlier indeed holds. The properties in the last three

points are inherited from the flow marginal value, 𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃, except for one: the marginal

surplus is decreasing in aggregate inventories, 𝐼. Indeed, if 𝐼 is smaller, customers anticipate that

the inventory-in-advance constraint is more likely to bind in the future. This makes it harder for

them to accumulate assets, reduces their asset holding and raises their marginal value for the asset.

The function Σ(·) entirely characterizes a customer’s optimal trading behavior. To see this, note

that if the customer and the dealer were unconstrained by inventories, then they would trade to the

“target holding” 𝑞★(𝛿 | 𝑃, 𝐼) such that the marginal trade surplus is equal to zero, i.e.,

Σ(𝑞★(𝛿 | 𝑃, 𝐼), 𝛿 | 𝑃, 𝐼) = 0.

Proposition 1 ensures that this equation has a unique solution. It also implies some intuitive

relationships between an individual customer’s current state, the aggregate state, and the customer’s

target asset holdings. In particular, as one might expect, the customer’s target asset position,

𝑞★(𝛿 | 𝑃, 𝐼), is increasing in his idiosyncratic preference shock 𝛿 and decreasing in the price 𝑃. A

new feature of our model is induced by the inventory constraints: customers now have incentive to

acquire additional assets out of precautionary motives. This incentive grows stronger as 𝐼 declines.

That is, since an additional unit of the asset is more valuable when dealers hold less inventory,

ceteris paribus, 𝑞★(𝛿 | 𝑃, 𝐼) is decreasing in 𝐼.

2.2 Dealers

Let Φ(𝑞, 𝛿) denote the joint distribution of asset holdings and preference shocks across customers.

We characterize this distribution below and note for now that optimal trading behavior implies that

its support is included in [0, 𝑞] × [𝛿, 𝛿], for some 𝑞 > 𝑞★(𝛿). Using the Nash bargaining solution,
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we can write the dealer’s (flow) profit function as

𝑟Π(𝑖) =(𝑣 − 𝑟𝑃)𝑖 + 𝜆

𝜇
𝜃

∫
(𝑞′,𝛿′)

max
0≤𝑞′′≤𝑞′+𝑖

{𝑉 (𝑞′′, 𝛿′) −𝑉 (𝑞′, 𝛿′) − 𝑃 (𝑞′′ − 𝑞′)} 𝑑Φ(𝑞′, 𝛿′),

where we use
∫
(𝑞′,𝛿′) to denote the integral over (𝑞′, 𝛿′) ∈ [0, 𝑞] × [𝛿, 𝛿]. Hence, the dealer’s

objective function has two components: the flow payoff from owning 𝑖 units of the asset, (𝑣 − 𝑟𝑃)𝑖;

and the expected capital gains from trading with a randomly selected customer.

Lemma 1. For any Φ(𝑞, 𝛿), 𝑃, and 𝐼, the profit function Π(𝑖) is concave and continuously

differentiable in 𝑖, with derivative:

𝑑Π

𝑑𝑖
(𝑖) = 𝑣 − 𝑟𝑃 + 𝜆

𝜇
𝜃

∫
(𝑞′,𝛿′)

max {Σ(𝑞′ + 𝑖, 𝛿′), 0} 𝑑Φ(𝑞′, 𝛿′).

The expression for the derivative of the profit function is intuitive. The first term is the direct

flow utility that a dealer enjoys by holding a marginal unit of the asset. The second term is the user

cost: what the dealer has to pay per unit of time to hold a marginal unit of the asset. The third term

is the marginal impact of increasing inventory on intermediation profits. Indeed, the dealer meets

customers with intensity 𝜆/𝜇 and appropriates a fraction 𝜃 of the marginal trading surplus created

by increasing inventories, which is equal to max{Σ(𝑞′ + 𝑖, 𝛿′), 0} with a customer of type (𝑞′, 𝛿′).

Notice in particular that this marginal surplus is strictly positive if and only if 𝑞′ + 𝑖 < 𝑞★(𝛿), that

is, if and only if it relaxes a binding inventory-in-advance constraint and helps the customer to trade

closer to the target.

The first-order condition for the dealer’s optimal inventory holdings is simply

Π′(𝑖) ≤ 0, with equality if 𝑖 > 0. (6)

Note that a solution to (6) requires 𝑟𝑃 ≥ 𝑣; if 𝑣 > 𝑟𝑃, then dealers would have incentive to acquire

infinite inventory. Hence, in equilibrium, the price will adjust to incorporate the dealers’ flow value

from holding the asset and the marginal benefit of increasing inventory on intermediation profits.

11



As in our analysis of the customer’s optimal asset position, the properties of Σ(·) also allow

for some natural, partial equilibrium comparative statics with respect to an individual dealer’s

optimal inventory holdings. In particular, given the behavior of all other agents (and, hence,

aggregate variables), one can easily show that an individual dealer’s optimal 𝑖 is increasing in the

rate at which he meets customers, 𝜆/𝜇, and the fraction of the trading surplus he extracts through

bargaining, 𝜃.

2.3 The steady-state distribution

We now characterize the steady state distribution Φ(𝑞, 𝛿). In a steady state, the gross outflow from

any Borel set 𝐵 of [0, 𝑞] × [𝛿, 𝛿]must be equal to the gross inflow:

(𝛾 + 𝜆)Φ(𝐵) =
∫
(𝑞,𝛿)

(
𝛾

∫
𝛿′
I{(𝑞,𝛿′)∈𝐵} 𝑑𝐹 (𝛿′) + 𝜆I{(min{𝑞★(𝛿),𝑞+𝐼},𝛿)∈𝐵}

)
𝑑Φ(𝑞, 𝛿).

The left-hand side is the gross outflow: customers leave the set 𝐵 when they change utility, with

intensity 𝛾, or when they trade, with intensity 𝜆. The right-hand side is the gross inflow. It states

that a customer of type (𝑞, 𝛿) may transition into the set 𝐵 in two ways. First, with intensity 𝛾

and probability 𝑑𝐹 (𝛿′), she draws the new utility shock 𝛿′ and her new type (𝑞, 𝛿′) belongs to 𝐵.

Second, with intensity 𝜆, she receives a trading opportunity, and her new type (min{𝑞★(𝛿), 𝑞+ 𝐼}, 𝛿)

belongs to 𝐵.

Dividing both sides by (𝛾+𝜆) we see that the steady state distribution solves the following fixed

point problem

Φ = 𝑇★ [Φ] , where 𝑇★[Φ] (𝐵) =
∫
(𝑞,𝛿)
P(𝑞, 𝛿, 𝐵) 𝑑Φ(𝑞, 𝛿) (7)

and

P (𝑞, 𝛿, 𝐵) = 𝛾

𝜆 + 𝛾

∫
I{(𝑞,𝛿′)∈𝐵} 𝑑𝐹 (𝛿′) +

𝜆

𝜆 + 𝛾
I{(min{𝑞★(𝛿),𝑞+𝐼},𝛿)∈𝐵} . (8)
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The function P(𝑞, 𝛿, 𝐵) is the transition probability function for the state of a customer when

she draws a new preference shock or receives a trading opportunity. After checking appropriate

regularity conditions, one can apply Theorems 11.12 and 12.3 in Stokey and Lucas (1989) to

establish the following results.

Proposition 2. Assume that 𝑃 > 0 and 𝐼 > 0. Then, there exists a unique steady-state distribution

Φ(𝑞, 𝛿 | 𝑃, 𝐼). This distribution has the following properties:

1. it is decreasing in 𝑃 in that, for any bounded function ℎ(𝑞, 𝛿) that is increasing in 𝑞, the
function 𝑃 ↦→

∫
ℎ(𝑞, 𝛿) 𝑑Φ(𝑞, 𝛿 | 𝑃, 𝐼) is decreasing in 𝑃;

2. it is weakly continuous in (𝑃, 𝐼);

3. given any initial condition, Φ0, the sequence 𝑇★𝑛 [Φ0] → Φ strongly.

The monotonicity property implies that the law of demand holds in steady state: higher prices are

associated with lower aggregate asset holdings by customers. Together with the continuity property,

it is crucial to our equilibrium existence proof. The strong convergence result is useful to compute

moments since it allows us to calculate any stationary moment by successive iteration.

2.4 Equilibrium

An equilibrium is made up of the following objects: a marginal trade surplus functionΣ(𝑞, 𝛿 | 𝑃, 𝐼),

an optimal inventory holdings of each dealer 𝐼, a joint distribution of asset holdings and preferences

Φ(𝑞, 𝛿 | 𝑃, 𝐼), and an inter-dealer price 𝑃. These objects must satisfy the following conditions:

(i) Σ(𝑞, 𝛿 | 𝑃, 𝐼) solves the Bellman equation (5) given 𝐼 and 𝑃;

(ii) 𝑖 = 𝐼 solves the dealer’s optimality condition (6) given Φ and 𝑃;

(iii) Φ(𝑞, 𝛿 | 𝑃, 𝐼) is the stationary distribution solving (7);

(iv) The asset market clears

∫
(𝑞′,𝛿′)

𝑞′ 𝑑Φ(𝑞′, 𝛿′ | 𝑃, 𝐼) + 𝜇𝐼 = 0. (9)
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It is easy to construct an equilibrium with 𝐼 = 0 by choosing a 𝑣 sufficiently small. In such an

equilibrium, there is no trade: when 𝐼 = 0, customers can never buy and, thus, for the market to

clear, the equilibrium inter-dealer price must be small enough to ensure that no customer finds it

optimal to sell. Hence, in the steady-state the asset is randomly allocated across customers, so that

Φ(𝑞, 𝛿) = Ψ(𝑞)𝐹 (𝛿) for some distribution Ψ of asset holdings. Assuming that the support of the

distribution of asset holdings has an upper bound 𝑞, this implies that 𝑃 should be chosen so that the

customer with the strongest incentive to sell chooses to hold on to her asset, i.e., Σ(𝑞, 𝛿 | 𝑃, 0) ≥ 0.

Finally, 𝑣 has to be small enough so that, given the distribution Ψ and the marginal trade surplus

function, Σ, the dealer’s first-order condition (6) holds with inequality.

Next, we characterize the set of 𝑣 such that there exists an equilibrium with active intermediation

and trade: 𝐼 > 0. Clearly, some 𝑣 belongs to this set if and only if there exists some 𝐼 > 0 and some

𝑃 > 0 such that the market clearing condition (9) is satisfied and the dealer’s first-order condition

(6) holds with equality. Because the stationary distribution is decreasing and weakly continuous

in 𝑃, it can be shown that the market-clearing condition implies a unique market clearing price

given 𝐼, denoted by 𝑃(𝐼). Plugging this price into the dealer’s first-order condition at equality, one

obtains in turns that 𝑣 = 𝑉 (𝐼), where

𝑉 (𝐼) ≡ 𝑟𝑃(𝐼) − 𝜆

𝜇
𝜃

∫
(𝑞′,𝛿′)

max {Σ(𝑞′ + 𝐼, 𝛿′ | 𝑃(𝐼), 𝐼), 0} 𝑑Φ(𝑞′, 𝛿′ | 𝑃(𝐼), 𝐼). (10)

Hence, the set of 𝑣 such that there exists an equilibrium with 𝐼 > 0 is simply the range of the

function 𝑉 (𝐼) above, for all values of 𝐼 that may arise in an equilibrium with active intermediation,

that is, for all 𝐼 ∈ (0, 𝑠/𝜇).

The range of 𝐼 is unbounded above because𝑉 (𝐼) → ∞ as 𝐼 → 𝑠/𝜇. This is true for two reasons.

First, when 𝐼 → 𝑠/𝜇 customers hold almost no assets, which implies that their marginal utility and

the inter-dealer price 𝑃(𝐼) go to infinity. Second, since dealers’ inventory are bounded away from

zero but customers’ asset holdings go to zero, the inventory-in-advance constraint never binds.

Hence, 𝑉 (𝐼) = 𝑟𝑃(𝐼) → ∞. In the Appendix, we show that the marginal trade surplus—and,
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hence, 𝑉 (𝐼)—is bounded below as 𝐼 → 0. Together with continuity, this implies that𝑉 (𝐼) remains

bounded below over (0, 𝑠/𝜇). The next theorem summarizes.

Theorem 1. There exists a 𝑣 such that an equilibrium with active intermediation exists if 𝑣 > 𝑣

and does not exist if 𝑣 < 𝑣.

While we do not know whether there are multiple equilibria, it is easy to study this question

numerically. In particular, one sees that multiple equilibria arise whenever there is a region of 𝐼

where the function𝑉 (𝐼) is decreasing; since lim𝐼→𝑠/𝜇 𝑉 (𝐼) = +∞, the Intermediate Value Theorem

implies that there are several 𝐼 mapping to the same 𝑣, which is just another way to say that the

same 𝑣 can be associated with several 𝐼.

2.5 A key property of the inventory constraint: Asymmetry

Before proceeding to our quantitative analysis, we highlight an important qualitative implication

of introducing an inventory constraint into an otherwise-standard model of OTC trade. Namely,

since the inventory constraint only has a direct impact on purchases, but not on sales, it creates

asymmetries that are unique to our model relative to Lagos and Rocheteau (2009).

Consider first a customer who seeks to purchase from a dealer who holds 𝑖 assets in inventories.

While she ideally wants to trade up to her target 𝑞★(𝛿), the inventory constraint implies that it is

not always feasible. Instead, she will trade so as to be as close as possible to the target given the

constraint; that is, 𝑞′ = min{𝑞★(𝛿), 𝑞 + 𝑖}. Clearly, sales are never constrained by inventories in this

way: a customer who holds 𝑞 > 𝑞★(𝛿) does not face a constraint on the size of her trade and is

able to reach her target in one transaction. Figure 1 illustrates. Therefore, relative to an otherwise

identical trading opportunity without a constraint (𝑖 = ∞), a customer purchase is smaller but a

customer sale is not.

A similar asymmetry holds for proportional transaction costs – the proportional markup/markdown

charged by dealers over the inter-dealer price. Consider first a customer purchase 𝑞★(𝛿) > 𝑞 and

recall equation 4, which states that, with Nash bargaining, the trading fee 𝜙 is a constant share of
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𝑞★(𝛿𝐿) 𝑞★(𝛿𝐻)

customer purchase

customer sale

𝐼
𝑞★(𝛿𝐻 ) − 𝑞★(𝛿𝐿) − 𝐼

𝑞★(𝛿𝐻) − 𝑞★(𝛿𝐿)

Figure 1. An illustration of the asymmetry between purchases and sales in the special case in which the distribution
of preference shocks has a discrete support and can take only two values 𝛿𝐿 < 𝛿𝐻 , with parameters such that
𝐼 < 𝑞★(𝛿𝐻 ) − 𝑞★(𝛿𝐿) < 2𝐼.

the surplus. Hence, as a function of marginal surplus, the proportional transaction cost is equal to:

𝜃

𝑃 (min{𝑞★(𝛿), 𝑞 + 𝑖} − 𝑞)

∫ min{𝑞★(𝛿),𝑞+𝑖}

𝑞

Σ(𝑥, 𝛿) 𝑑𝑥.

Clearly, since the marginal surplus is decreasing, the transaction cost above decreases in 𝑖. In other

words, relative to an otherwise identical trading opportunity without a constraint, a customer-buyer

pays a larger transaction cost. A customer-seller, on the other hand, is not constrained by inventories

and pays the same transaction cost as she would in the absence of an inventory constraint.

Corollary 1. Relative to otherwise identical trading opportunities without an inventory constraint,

customer buyers trade smaller quantities and pay larger proportional transaction cost. Customer

sellers trade identical quantities and pay identical proportional transaction costs.

One may wonder about the empirical implications of this Corollary: does it imply that customers

purchases are smaller and more expensive than customer sales? The answer to this question is not

obvious since, in principle, the size and the cost of purchases and sales may differ even without

inventory constraints.

However, in Lemma 4 of Appendix B, we establish that, in an otherwise identical model

without an inventory constraint, purchases and sales have the same average size. Consequently, in

the model with a constraint, we find numerically that customer purchases are smaller, on average,

than customer sales. Since, in the aggregate, the total quantity of assets purchased and sold are

equal, this means that our model predicts that the number of customer purchases will be larger than
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that of sales. These asymmetries in trade size and the number of trades are well-known empirical

features of several major OTC markets (see, for example, Green, Hollifield, and Schürhoff, 2007).

Hence, introducing inventory constraints is not just a conceptual contribution, but it also brings the

model closer to the data along this important dimension.

Asymmetries in transaction costs, on the other hand, can go either way. The reason is that, in

the absence of an inventory constraint, proportional transaction costs can be different for purchases

than sales. For example, under their preferred parameterization, the model of Duffie, Gârleanu, and

Pedersen (2005) implies that transaction costs are zero for purchases and strictly positive for sales.

In Appendix B, we show that, in the model of Lagos and Rocheteau (2009) with an isoelastic utility

function, 𝑢(𝑞, 𝛿) = 𝑞1−1/𝜂

1−1/𝜂 𝛿, value-weighted transaction costs for purchases are strictly smaller than

those for sales if and only if 𝜂 > 2. In these cases, we find numerically that the inventory in advance

constraint generally raises the transaction cost for purchases, but not always by a sufficient amount

to make them larger than the transaction costs for sales.

3 Quantitative Exercise

In this section, we use our model to quantitatively evaluate the market impact of post-GFC

regulations that increased dealers’ balance sheet costs. Relative to a purely empirical approach that

focuses on traditional liquidity measures, such as transaction costs, our structural approach enables

to evaluate welfare. This is crucial: for example, we can imagine a scenario where post-GFC

regulations increased transaction costs without impacting asset allocation, in which case it would

have only had redistributive effects. Our analysis proceeds in two steps. First, we calibrate our

model to match moments from the corporate bond market before the GFC. Then, we infer the change

in 𝑣 that is consistent with the observed decline in dealers’ inventory holdings post-GFC. Using

this implicit change in dealers’ inventory costs, we evaluate the effects of post-GFC regulations on

liquidity, prices, allocations, and welfare. Our calibration generates a rise in trading costs consistent

with observed data. Furthermore, it reveals that regulations have had a substantial negative impact
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on asset allocation: pre-GFC, the welfare loss created by the OTC market, relative to the first best,

was about 1.25%, post-GFC this loss has increased to 2.4%.

3.1 Data

We use the academic version of the Trade Reporting and Compliance Engine (TRACE) database

of US corporate bond transactions, made available by the Finance Industry Regulatory Authority

(FINRA). The raw TRACE data provides detailed information on all secondary market transactions

self-reported by FINRA member dealers. These include bond’s CUSIP, trade execution time and

date, transaction price ($100 = par), the volume traded (in multiple of par), a buy/sell indicator,

and flags for dealer-to-customer and inter-dealer trades. Unlike the public version, the academic

TRACE does not censor trade volume at $5 million (for investment grade bonds) or $1 million

(for high-yield bonds). The academic version also contains masked dealer identities as well as

transactions in privately traded Rule 144A bonds that are not disseminated to the public.

Dealers are required to correct errors in previously reported trades with flags corresponding to

trade cancellations, modifications, or reversals. We use the standard cleansing algorithm described

in Dick-Nielsen (2009, 2014) and Dick-Nielsen and Poulsen (2019) to remove these self-reported

errors. Our TRACE sample starts in July 2002 and covers transactions until June 2020. We exclude

the COVID-19 crisis period in March and April 2020 from our sample, since our maintained

assumption of a non-stochastic steady state is not appropriate for such a turbulent period (see

Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga, 2021 for an empirical study).

We collect issue credit ratings and bond characteristics from Mergent Fixed Income Securities

Database (FISD). We drop all bonds not contained in the FISD and only consider CUSIPs in

TRACE identified by FISD as fixed-coupon US corporate debentures and US corporate bank notes

with non-missing maturity dates and amounts outstanding. We also exclude bonds with equity-like

and special features.5 Furthermore, we exclude trades associated with new issuances and also

5Following earlier work, we exclude all bonds that are convertible, puttable, exchangeable, preferred, asset-backed,
secured lease obligations, unit deals, or Yankee bonds. Additionally, we do not consider bonds with variable coupons
or sinking funds, or those issued in a foreign currency or as part of unit deals.
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remove transactions that happen within 90 days of the traded bond issuance. This ensures that

trading activity in the sample closely aligns with the non-stochastic steady state envisioned by the

model.

Our model features a representative asset and a representative customer. As is well known,

in reality, there is substantial heterogeneity in both these dimensions in the corporate bond

market. Hence, we apply the following two filters to control for heterogeneity while keeping

the sample economically relevant. First, we concentrate on trades for investment-grade (IG) bonds,

which exhibit more homogeneous liquidity properties and represent the vast majority of daily

trading volume in TRACE.6 Second, we argue that it would be unreasonable to require that our

representative customer model rationalizes the vast difference in trade size between institutional

and retail investors. For this reason, we focus on trades larger than a threshold of $1 million, which

are more likely to originate from institutional rather than retail investors.

Finally, in practice, dealers provide liquidity via “agency” and “risky-principal” trades. In an

agency trade, the dealer acts as a match maker between buyers and sellers, and never actually owns

the asset being traded. In contrast, in a risky-principal trade, dealers buy and sell on their own

account, absorbing sell orders onto their balance sheet and fulfilling buy orders by reducing their

inventory holdings. Since trading costs for these two types of trades have been shown to be quite

different (see e.g., Choi, Huh, and Shin, 2023)—and, in our theory, inventories are a key input

into the provision of liquidity services—it is natural for us to focus exclusively on risky-principal

transactions. We identify these transactions in the data using the procedure described in Kargar,

Lester, Lindsay, Liu, Weill, and Zúñiga (2021).

Table 1 reports summary statistics for the daily number and volume of inter-dealer, customer-

bought and customer-sold trades for our final, filtered sample. Note that, while the total volume

of customer buys and sells are very similar (approximately $3.9 billion), we observe, on average,

more customer buys than customer sells, which is a key qualitative prediction of our model with a

(binding) inventory-in-advance constraint.

6In the third quarter of 2023, IG bonds represent approximately 85% of the average total daily trading volume of
publicly traded US corporate bonds. Source: U.S. corporate bond statistics from SIFMA.
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[Table 1 about here.]

3.2 Calibration to Pre-GFC corporate bond market: Targets

We set the discount factor, 𝑟 , equal to 5%. We assume that customers have an iso-elastic utility

function of the form

𝑢(𝑞, 𝛿) = 𝑞1−1/𝜂

1 − 1/𝜂𝛿.

In addition, we assume that the preference shock, 𝛿, is an iid draw from a discretized log-normal

distribution, 𝐹 (𝛿). Given our choice of an iso-elastic utility function, the model is homogeneous

in 𝑠, the per-capita supply of the asset.7 Hence, we normalize 𝑠 such that the asset supply held by

customers is one, and the aggregate dealer inventories represent 2% of the total asset supply, similar

to the dealer sector’s pre-GFC corporate bond holding share. Finally, we normalize the mean of

𝐹 (𝛿) such that the price of the asset equals 1/𝑟 in a Walrasian equilibrium in which the supply held

by customers is one, i.e., the same aggregate quantity of asset they hold in our calibration.

The intensity of contact between customers and dealers is typically difficult to calibrate, because

the TRACE data does not offer direct evidence about customers’ search process. We rely on the

work of Kargar, Lester, Plante, and Weill (2023), who leverage proprietary data from an electronic

trading platform to measure customers’ time to trade in the U.S. corporate bond market. Following

their estimate, we set 𝜆 so that a customer contacts a dealer every 3 days.

Given the assumptions above, there are five parameters that we need to calibrate: the variance

of the preference shocks, 𝜎2
𝛿
; the arrival rate of preference shocks, 𝛾; the elasticity parameter for

the customers’ utility function, 𝜂; the dealers’ bargaining power, 𝜃; the dealers’ utility parameter,

𝑣, and the measure of active dealers, 𝜇. In what follows, we describe the five target moments that

7Specifically, suppose that we scale the supply by the constant 𝜅, i.e., 𝑠 = 𝜅𝑠. Then, scaling preference shocks by
the same factor, 𝛿 = 𝜅1/𝜎𝛿, renders the marginal utilities the same for all investors if they scale their holdings by 𝜅. As
a result, the equilibrium price remains unchanged, as do the holdings of customers and dealers relative to the aggregate
supply.
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Figure 2. Monthly standard deviation of log trading volume for customer-to-dealer trades in percentage points.
We restrict the sample to subset of trades involving risky-principal trades of investment-grade bonds with a volume
exceeding $1 million. The vertical shaded bars indicate NBER recessions. Sources: Academic TRACE and FISD.

we use to determine these parameters. Though in general the target moments and parameters are

determined simultaneously, we try to connect each moment to the parameter it affects most directly.

The variance of preference shocks. The dispersion in preference shocks determines customers’

equilibrium asset holdings and the size of trades they execute when their asset holdings differ from

their target portfolios. Hence, to help identify 𝜎2
𝛿
, we target the standard deviation of log trade

size. In our sample of IG bond trades with par value exceeding $1 million, we find that the monthly

standard deviation of log size is about 0.9. Figure 2 plots the monthly standard deviation of log

trade size for customer-bought and customer-sold trades.

The frequency of preference shock. This parameter is a key determinant of how frequently

customers want to buy or sell. Therefore, to help determine 𝛾, we target the turnover of assets that

customers purchase, generated by trades above of size greater than $1 million. This is calculated by

dividing the total quarterly trading volume by the quarterly average of the amount outstanding of
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Figure 3. Annual turnover for customer-to-dealer trades in percentage points. We restrict the sample to subset of
trades involving risky-principal trades of investment-grade bonds with a volume exceeding $1 million. The vertical
shaded bars indicate NBER recessions. Sources: Academic TRACE and FISD.

bonds for dealer-to-customer transactions in our sample. We find that the turnover is approximately

20% annually . Figure 3 plots the annual turnover for customer-bought and customer-sold trades.

Dealers’ bargaining power and the elasticity of the customer’s utility function. To help

determine these parameters we focus on proportional transaction costs. On the one hand, dealers’

bargaining power determines the overall level of transaction costs paid by customers. On the other

hand, the elasticity of the customer’s utility function is one determinant of the asymmetry between

transaction costs for customer purchases and customers’ sales. This is demonstrated formally in

Lemma 5 of the appendix: it shows that, without an inventory-in-advance constraint, a lower value

of 𝜂 tends to make the transaction costs for customers purchases larger than for sales.

Now turning to measurement, our empirical target is based on the value-weighted two-way

trading cost proposed by Choi, Huh, and Shin (2023):

2𝑄 × traded price − reference price
reference price

, (11)
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Figure 4. Monthly size-weighted average of customer-bought and customer-sold two-way (round-trip) trading costs
proposed by Choi, Huh, and Shin (2023) from equation (11). We restrict the sample to subset of trades involving
risky-principal trades of investment-grade bonds with a volume exceeding $1 million. The horizontal dashed lines
represent subsample averages for the pre-GFC (2006–2007) and post-GFC (2010–2019) periods. The vertical shaded
bars indicate NBER recessions. Sources: Academic TRACE and FISD.

where 𝑄 is equal to +1 for a customer buy and −1 for a customer sell. For each customer trade,

a “reference price” is calculated as the volume-weighted average price of inter-dealer trades larger

than $100,000 in the same bond-day, excluding inter-dealer trades executed within 15 minutes. The

measure is calculated at the trade level for all customer trades classified as risky principal, and then

calculated at the bond-day level by taking the volume-weighted average of trade level spreads.

We find that, for risky-principal customer trades involving IG bonds with a volume exceeding

$1 million, two-way trading costs from Choi, Huh, and Shin (2023) for buy and sell transactions

in the pre-GFC periods are 10.8 bps and 9.6 bps, respectively. Figure 4 plots the volume-weighted

average round-trip (two-way) customer-bought and customer-sold transactions costs from Choi,

Huh, and Shin (2023).

Measure and utility flow of dealers. The measure of dealers 𝜇 and their utility flow 𝑣 jointly

determine how much inventory they hold on aggregate, 𝜇× 𝐼. Moreover, dealers’ individual choice
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of inventory, 𝐼, determines how many purchases customers need to make in order to reach their

target holding. Hence, we propose two targets that help determine 𝜇 and 𝑣: the total asset holdings

of the dealer sector before the GFC, as a share of outstanding assets; and the ratio of the number of

customer-sell transactions to the number of customer-buy transactions.

To set a target for the asset holdings of the dealer sector prior to GFC, we rely on data from the

Federal Reserve’s Flow of Funds. Figure 6 plots the share of corporate and foreign bonds held by

security brokers and dealers from the Federal Reserve’s Flow of Funds. Up until 2002, this share

was slightly above 2%, then it dramatically increased during the years leading up to the GFC, only

to drop sharply to levels below 1% after the GFC. The substantial increase leading up to the GFC

may be partly attributed to non-agency mortgage-backed securities (MBS), which are included in

the Flow of Funds accounting but not relevant to our quantitative exercise. For this reason, for the

pre-GFC calibration, we take the dealer sector asset holding to be 2% of the aggregate asset supply.

In Figure 5, we plot the ratio of the number of customer-sold trades to the number of customer-

bought trades in our sample, after adjusting for order flow imbalance (see Appendix C). We calculate

that, prior to the GFC, this ratio averaged about 0.76.

3.3 Calibration to pre-GFC corporate bond market: Outcomes

Table 2 presents the target moments and Table 3 reports our calibrated parameters. All targets are

matched nearly exactly.

[Table 2 about here.]

Since the Walrasian price of the asset would be 1/𝑟 and dealers are risk neutral, it is natural to

interpret the flow utility that dealers receive from holding a unit of this bond as 𝑣 = 1 − 𝜏, where

𝜏 denotes the (flow) inventory cost to dealers of holding the asset on their balance sheet. Hence, if

we think of the asset as a consol bond, our calibration implies that inventory costs before the GFC

were approximately 3.99% of the bond’s coupon.

[Table 3 about here.]
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Figure 5. Ratio of the monthly number of customer-sold to customer-bought trades. We adjust this ratio for order
imbalance, as described in Appendix C. We restrict the sample to subset of trades involving risky-principal trades of
investment-grade bonds with a volume exceeding $1 million. The horizontal dashed line at 1 represents the case in
which the number of customer-bought trades equals the number of customer-sold trades, as is the case in a model
without the inventory constraint. The vertical shaded bars indicate NBER recessions. Sources: Academic TRACE and
FISD.

Figure 7 plots the (log of) customers’ target asset holdings, 𝑞★(𝛿), along with each dealers’

equilibrium inventory holdings, 𝐼. To highlight the effects of the inventory constraint in our

framework, we also plot the target asset holdings in an environment without the inventory constraint

(i.e., the environment of Lagos and Rocheteau, 2009, with the same parameters, assuming that the

asset supply is equal to one). The dashed horizontal line is the inventory holdings of dealers: hence,

the inventory constraint only binds for those customers who receive the large enough preference

shock. Also note that, at the scale of the figure, the target asset holdings are indistinguishable from

the targets in the equilibrium without inventory constraint (they are in fact slightly larger).

Introducing an inventory constraint creates a small increase in the bid-ask spread charged by

dealers: given the parameter values that emerge from our calibration, the trading costs in the

no-constraint environment would be approximately 0.5 bps smaller. As trading costs rise, the

customers’ valuation for the asset declines, which puts downward pressure on the inter-dealer price.

25



1

2

3

4

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Share of corporate bonds held by dealers (%)

Figure 6. Share of corporate and foreign bond holdings for security broker-dealers. The vertical shaded bars indicate
NBER recessions. Source: Table L.213 of the Federal Reserve’s Z.1: Financial Accounts of the United States (the
Flow of Funds).

Figure 7. Target asset holdings, 𝑞★(𝛿), with inventory constraints (CKLW) and without (LR). The horizontal line is 𝐼
in CKLW.
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However, the presence of an inventory constraint also puts upward pressure on the price, because

precautionary incentives increase customers’ demand for the asset. In equilibrium, we find that the

forces putting downward pressure on the price dominate, as the inter-dealer price in our benchmark

model is slightly lower than in the model without an inventory constraint.

Overall, however, we find that the presence of an inventory constraint in the pre-GFC economy

had quite mild effects on equilibrium prices and target holdings, relative to an environment where

dealers are not required to hold inventory in order to intermediate trade. To get a sense of the welfare

cost of the inventory constraint, we calculate the gains from trade that are realized in equilibrium

relative to the gains from trade in a frictionless environment. More precisely, we consider the

following measure of welfare loss:

𝐿 =
𝑊 𝑓 𝑏 −𝑊𝑒𝑞𝑚

𝑊 𝑓 𝑏 −𝑊𝑎𝑢𝑡

, (12)

where 𝑊 𝑓 𝑏, 𝑊𝑒𝑞𝑚, and 𝑊𝑎𝑢𝑡 , denote total welfare in the (first best) frictionless environment, in

equilibrium, and in autarky, respectively. This measures the fraction of gains from trade lost by the

market in equilibrium relative to the first best. As a point of reference, we find that the environment

without an inventory constraint—but with search and bargaining frictions—creates a welfare loss

of 0.87%. In our environment, where dealers must hold inventory in order to sell, the welfare loss

is 1.25%.

3.4 The effects of rising inventory costs

We now study the impact of increasing dealers’ cost of holding assets (by decreasing 𝑣) so as to

create a threefold decline in their inventories, from 2% to 2%/3 ≃ 0.66% of aggregate bond supply.

This decline is in line with Figure 9, where we observe that dealers’ inventories were around 2% of

aggregate bond supply in early 2000, and dropped to around 0.6% by 2020.
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Figure 8. Value-weighted trading costs

Trading costs. Figure 8 shows that the resulting increase in the value-weighted trading cost

was about 4 bps, nearly 80% of the increase we observed in the data. The Figure also reveals a

striking asymmetry: trading costs increase for customer purchases, but not for customer sales. This

quantitative finding is consistent with the intuition given in Section 2.5. In the data, we observe a

similar asymmetry, although it is much less pronounced than in the model: two-way transaction

costs increased by 5.4 bps for customer purchases and by 4.8 bps for customer sales.

Three structural measurement exercises. One advantage of a structural model is to facilitate

measurements that would be difficult to make based on a purely reduced-form econometric approach.

First, our model provides a measure of the implicit cost of regulation on dealers. Figure 9 plots

dealers’ aggregate inventories as a fraction of total supply, 𝜇𝐼/𝑠 against the implicit inventory cost

𝜏. It shows that, in order to engineer a threefold decline in dealers’ inventory holdings—from 2%

to 2%/3 ≃ 0.66%—inventory costs need to increase almost tenfold, from approximately 4% in the
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pre-crisis calibration to approximately 40%, as a fraction of the asset coupon, holding all other

parameters fixed.

Second, in Figure 10, we illustrate the effect of post-GFC regulation on welfare. Namely, we

plot the welfare loss, defined in (12), as the inventory cost rises. As shown by the plain blue curve

in the figure, an increase in inventory cost 𝜏 from approximately 4% to 17% increases the welfare

loss from 1.25% to about 2.4%, an increase of nearly 100%. One caveat of this calculation, of

course, is that it abstracts from potential benefits that derive from greater financial stability.

One may argue that our measure of welfare is narrow because we wrote a partial equilibrium

model: it focuses on the welfare of those investors who participate (directly and indirectly) in OTC

markets. One could also argue that regulation has a welfare impact through other channels, too,

such as the effects on firms’ cost of capital. One way to measure the impact on the cost of capital

is to calculate the liquidity yield spread of the asset implied by our model. Recall that, given

the normalization of preference shocks explained above, the frictionless price is equal to 1/𝑟, the

present value of a riskless consol bond with a coupon equal to 1. Hence, it is natural to define the

liquidity yield spread based on the following pricing condition: the present value of this consol

bond, at rate equal to 𝑟 plus the liquidity yield spread, should be equal to 𝑃, the price of the consol

bond in our theoretical OTC market. This gives:

liquidity yield spread =
1
𝑃
− 𝑟.

Figure 11 shows that as inventory costs rise, the yield spread also increases. Prior to the GFC, the

liquidity yield spread is about 2 bps and, after the GFC, rises to more than 5 bps. Hence, according

to our calibration, the liquidity component of firms’ cost of capital has increased dramatically after

the crisis.
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Figure 9. Dealers’ aggregate inventory as a percentage of total supply

Figure 10. Equilibrium welfare loss
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Figure 11. Yield spread with inventory in advance constraint (CKLW) and without (LR)

4 Conclusion

We extend the standard search-theoretic model of dealer-intermediated OTC markets, in which

dealers never hold inventory, by introducing a simple and natural “inventory-in-advance” constraint,

which makes inventory a necessary input to intermediation. We characterize the equilibrium, and

study how dealers’ optimal inventory choice depends on inventory costsWe calibrate the model to

transaction-level data from the corporate bond market and analyzed the welfare impact of rising

inventory costs associated with post-crisis regulations. We measure the welfare loss as the fraction

of total gains from trade that the OTC market fails to generate. We find that the rise in inventory

costs substantially increases the welfare loss, from about 1.25% to approximately 2.4% of the total

gains from trade.
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Tables

Table 1. Summary statistics. This table provides mean, standard deviation, median, 25th, 75th, and 95th percentiles
of the average daily number of trades and volume by counterparty type, all years. The “daily num.” variables refer
to the daily number of trades and the “daily vol.” variables refer to the average total daily volume, in millions USD.
“customer” trades refer to trades between a dealer and a customer which represent the sum of “customer-bought” and
“customer-sold” trades. The sample is from the academic version of TRACE and runs from July 2002 to the end of
June 2020. Our sample only includes trades for investment-grade bonds with size exceeding $1 million and excludes
the COVID-19 crisis period in March and April 2020. All agency transactions, where dealers act as match makers have
been removed. Rule 144A bonds for which trades not disseminated to the public are excluded. We filter the sample as
described in the main text.

Mean Std. dev. Q25 Q50 Q75 Q95
Daily num. inter-dealer 844.40 469.91 584 817.50 1,048 1,663.30

Daily num. customer 988.94 522.80 681 965 1,252.75 1,866.65

Daily num. customer-bought 511.40 272.60 353 497 646 985.55

Daily num. customer-sold 477.54 257.75 322.25 462 614 907.20

Daily vol. interdealer ($m) 2,603.91 1,568.39 1,699.70 2,455.07 3,224.50 5,442.98

Daily vol. customer ($m) 4,516.78 2,389.89 3,154.19 4,384.17 5,697.99 8,484.16

Daily vol. customer-bought ($m) 2,200.03 1,173.49 1,539.42 2,145.60 2,737.46 4,165.64

Daily vol. customer-sold ($m) 2,316.75 1,255.36 1,591.49 2,234.40 2,979.39 4,429.07
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Table 2. Calibration targets.
This table presents moments from the TRACE data, which serve as calibration targets for the model. The pre-GFC
period spans from 2006 to 2007, while the post-GFC period covers 2010 to 2019. We use the values from the pre-GFC
period as our calibration targets.

Moment Pre-GFC Post-GFC
Num. customer-sold/num. customer-bought trades 0.7621 0.7794

Two-way spread, customer-sold (bps) 9.5160 13.6105

Two-way spread, customer-bought (bps) 10.8928 16.9578

Two-way spread for customer trades (bps) 10.1066 15.1040

Monthly std. dev. of log trade size, customer-bought 0.8802 0.8180

Monthly std. dev. of log trade size, customer-sold 0.8943 0.8562

Annual turnover, customer-bought (%) 19.9163 14.5082

Annual turnover, customer-sold (%) 21.2388 16.2388
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Table 3. Values of calibrated parameters.
This table reports parameter values used in calibrating the model with associated empirical targets in the TRACE data.
The target values are reported in Table 2.

Parameter Value Target (target value)
𝜎2
𝛿

Dispersion in preference shocks 0.2277 Std. dev. of log trade size (0.89)

𝜃 Dealers’ bargaining power 0.6415 Avg. two-way customer trading cost, buy (10.8 bps)

𝜂 Elasticity of customers’ utility 2.296 Avg. two-way customer trading cost, sell (9.5 bps)

𝛾 Preference shock intensity 0.3902 Annual turnover for customer trades (20%)

𝑣 Flow utility of dealers 0.9601 Dealer sector’s pre-GFC bond holding share (2%)

𝜇 Measure of dealers 0.0088 No. customer-sold / No. customer-bought (0.76)
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Appendix

A Omitted Proofs

A.1 Proof of Proposition 1
Existence, uniqueness, and continuity. Let 𝑥 = (𝛿, 𝑞, 𝑃, 𝐼) and 𝑋 = [𝛿, 𝛿] × (0,∞) × (0,∞) × [0,∞).
For any strictly positive 𝑞′ and 𝑃′, let 𝑋 ′ = [𝛿, 𝛿] × [𝑞′,∞) × (0, 𝑃′] × [0,∞). Now consider the set 𝐶𝑏 (𝑋 ′)
bounded continuous function of 𝑥 ∈ 𝑋 ′, equipped with the sup norm. For any ℎ ∈ 𝐶𝑏 (𝑋 ′), define the
operator:

𝑇 [ℎ] (𝑞, 𝛿 | 𝑃, 𝐼) =
𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃

𝑟 + 𝛾 + 𝜆(1 − 𝜃) +
𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)E
𝐹 [ℎ(𝑞, 𝛿′ | 𝑃, 𝐼)]

+ 𝜆(1 − 𝜃)
𝑟 + 𝛾 + 𝜆(1 − 𝜃) max{ℎ(𝑞 + 𝐼, 𝛿 | 𝑃, 𝐼), 0}.

Since the first term 𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃 is bounded on the domain 𝑋 ′, so is 𝑇 [ℎ]. Moreover, since 𝑇 [ℎ] is the
sum of continuous functions, it is also continuous. Hence, the operator 𝑇 maps 𝐶𝑏 (𝑋 ′) into itself. Next,
one easily verifies that it satisfies the Blackwell sufficient condition for a contraction (see Theorem 3.3 in
Stokey and Lucas, 1989, henceforth SLP), with modulous of contraction (𝛾 + 𝜆(1 − 𝜃))/(𝑟 + 𝛾 + 𝜆(1 − 𝜃)).
An application of the Contraction Mapping Theorem 3.2 in SLP establishes uniqueness of a bounded and
continuous solution over any 𝑋 ′. Given uniqueness, this solution can be extended uniquely over the entire
set 𝑋 by letting 𝑞′ → 0 and 𝑃′ → ∞.

Conversely, if we consider any solution of the HJB defined over the domain 𝑋 , then its restriction over
the domain 𝑋 ′ satisfies the HJB as well and so must coincide with the solution we constructed above.

Monotonicity. The operator𝑇 preserves the the following weak monotonicity properties: if ℎ is increasing
in 𝛿 and decreasing in (𝑞, 𝑃, 𝐼), then so is𝑇 [ℎ]. Since weak monotonicity properties are preserved by passing
to the limit, they are inherited by the fixed point. Now note that the first term of 𝑇 [ℎ], 𝑢𝑞 (𝛿, 𝑞) − 𝑟𝑃 is in fact
strictly increasing in 𝛿, and strictly decreasing in (𝑞, 𝑃). Hence, the fixed point, Σ = 𝑇 [Σ], also has these
strict monotonicity properties.

𝚺(𝒒, 𝜹) goes to infinity as 𝒒 → 0. Given that the third term of the Bellman equation is positive it
follows that, for any 𝑞:

Σ(𝑞, 𝛿) ≥
𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃

𝑟 + 𝛾 + 𝜆(1 − 𝜃) +
𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)Σ(𝑞, 𝛿) ⇒ Σ(𝑞, 𝛿) ≥
𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃

𝑟 + 𝜆(1 − 𝜃) , (13)

where we omitted the dependence ofΣ on (𝑃, 𝐼) for notational convenience. Since the utility function satisfies
Inada condition, lim𝑞→0 Σ(𝑞, 𝛿) = +∞. Since Σ(𝑞, 𝛿) is increasing in 𝛿, it follows that lim𝑞→0 Σ(𝑞, 𝛿) = +∞
for all 𝛿 as well.
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𝚺(𝒒, 𝜹) < 0 for 𝒒 large enough. Let 𝑞 denote the solution of 𝑢𝑞 (𝛿, 𝑞) = 𝑟𝑃. Evaluating 𝑇 [Σ] at (𝛿, 𝑞)
and keeping in mind that Σ is a fixed point, we obtain:

Σ(𝑞, 𝛿) = 𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)E
𝐹
[
Σ(𝑞, 𝛿)

]
+ 𝜆(1 − 𝜃)
𝑟 + 𝛾 + 𝜆(1 − 𝜃) max{Σ(𝑞 + 𝐼, 𝛿), 0},

Now using that Σ is increasing in 𝛿 and that Σ(𝛿, 𝑞 + 𝐼) ≤ Σ(𝛿, 𝑞), we obtain

Σ(𝑞, 𝛿) ≤ 𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)Σ(𝑞, 𝛿) +
𝜆(1 − 𝜃)

𝑟 + 𝛾 + 𝜆(1 − 𝜃) max{Σ(𝑞, 𝛿), 0},

implying that Σ(𝑞, 𝛿) ≤ 0. Given that Σ is strictly strictly decreasing in 𝑞 and strictly increasing in 𝛿, the
result follows.

Using 𝚺(𝒒, 𝜹) to construct the value function 𝑽 (𝒒, 𝜹). The properties established in the previous
paragraph implies that the equation Σ(𝑞, 𝛿) = 0 has a unique solution, which we denote by 𝑞★(𝛿). Fix some
𝑞0 ∈ (0,∞) and let 𝛿 ↦→ 𝑉 (𝑞0, 𝛿) denote the solution of:

𝑟𝑉 (𝑞0, 𝛿) = 𝑢(𝑞0, 𝛿) + 𝛾E𝐹 [𝑉 (𝑞0, 𝛿
′) −𝑉 (𝑞0, 𝛿)] + 𝜆(1 − 𝜃)

∫ min{𝑞★ (𝛿 ) ,𝑞0+𝐼 }

𝑞0

Σ(𝑥, 𝛿) 𝑑𝑥.

The existence and uniqueness of such a function is guaranteed by standard contraction-mapping arguments.
Our guess for the value function at any (𝛿, 𝑞) is:

𝑉 (𝑞, 𝛿) = 𝑉 (𝑞0, 𝛿) +
∫ 𝑞

𝑞0

Σ(𝑥, 𝛿) 𝑑𝑥 + 𝑃(𝑞 − 𝑞0). (14)

Note that, since Σ(𝑞, 𝛿) is strictly decreasing, it follows that 𝑉 (𝑞, 𝛿) is strictly concave. Next, we verify that
𝑉 (𝑞, 𝛿) constructed above solves the HJB equation (1). Namely, multiplying the above equation by 𝑟 and
subsituting in the HJB equation for 𝑉 (𝑞0, 𝛿) and Σ(𝑥, 𝛿), we have:

𝑟𝑉 (𝑞, 𝛿) =𝑢(𝑞0, 𝛿) + 𝛾E𝐹 [𝑉 (𝑞0, 𝛿
′) −𝑉 (𝑞0, 𝛿)] + 𝜆(1 − 𝜃)

∫ min{𝑞★ (𝛿 ) ,𝑞0+𝐼 }

𝑞0

Σ(𝑥, 𝛿) 𝑑𝑥

+
∫ 𝑞0

𝑞

(
𝑢𝑞 (𝑥, 𝛿) − 𝑟𝑃

)
𝑑𝑥 + 𝛾

∫ 𝑞

𝑞0

E𝐹 [Σ(𝑥, 𝛿′) − Σ(𝑥, 𝛿)] 𝑑𝑥

+ 𝜆(1 − 𝜃)
∫ 𝑞

𝑞0

[
Σ(min{𝑞★(𝛿), 𝑥 + 𝐼}, 𝛿) − Σ(𝑥, 𝛿)

]
𝑑𝑥 + 𝑟𝑃(𝑞 − 𝑞0).

Adding the first term on the first line, the first term on the second line, and the third term on the third line,
we obtain 𝑢(𝑞0, 𝛿), that is, the first term on the right-hand side of the HJB equation (1). Adding the second
term on the first line together with the second term on the second line, we obtain 𝛾E𝐹 [𝑉 (𝑞, 𝛿′) −𝑉 (𝑞, 𝛿)],
that is, the second term on the right-hand side of the HJB equation (1). Grouping the last two other terms
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together, we obtain:

𝜆(1 − 𝜃)
[∫ min{𝑞★ (𝛿 ) ,𝑞0+𝐼 }

𝑞0

Σ(𝑥, 𝛿) 𝑑𝑥 +
∫ 𝑞

𝑞0

[
Σ(min{𝑞★(𝛿), 𝑥 + 𝐼}, 𝛿) − Σ(𝑥, 𝛿)

]
𝑑𝑥

]
=𝜆(1 − 𝜃)

[∫ min{𝑞★ (𝛿 ) ,𝑞0+𝐼 }

𝑞0

Σ(𝑥, 𝛿) 𝑑𝑥 +
∫ 𝑞+𝐼

𝑞0+𝐼
Σ(min{𝑞★(𝛿), 𝑥}, 𝛿) 𝑑𝑥 +

∫ 𝑞0

𝑞

Σ(𝑥, 𝛿) 𝑑𝑥
]

=𝜆(1 − 𝜃)
[∫ min{𝑞★ (𝛿 ) ,𝑞0+𝐼 }

𝑞0

Σ(𝑥, 𝛿) 𝑑𝑥 +
∫ min{𝑞★ (𝛿 ) ,𝑞+𝐼 }

min{𝑞★ (𝛿 ) ,𝑞0+𝐼 }
Σ(𝑥, 𝛿) 𝑑𝑥 +

∫ 𝑞0

𝑞

Σ(𝑥, 𝛿) 𝑑𝑥
]

=𝜆(1 − 𝜃)
∫ min{𝑞★ (𝛿 ) ,𝑞+𝐼 }

𝑞

Σ(𝑥, 𝛿) = 𝜆(1 − 𝜃) (𝑉 (𝑞′, 𝛿) −𝑉 (𝑞) − 𝑃(𝑞′ − 𝑞))

where 𝑞′ ≡ min{𝑞★(𝛿), 𝑞 + 𝐼}. In the above, the second line obtains by change of variable, and the third line
because, by definition of 𝑞★(𝛿), Σ(min{𝑞★(𝛿), 𝑥}) = 0 for all 𝑥 ≥ 𝑞★(𝛿). The fourth line follows by piecing
the three integral together and using our definition of 𝑉 (𝑞, 𝛿) in equation (14). The last step is to verify that
𝑞′ maximizes surplus subject to 0 ≤ 𝑞′ ≤ 𝑞 + 𝐼, which follows immediately since𝑉 (𝑞′, 𝛿) is strictly concave.

A.2 Proof of Lemma 1
The integrand in the dealer’s profit function is the maximized trade surplus:

𝑔(𝑖, 𝑞′, 𝛿′) = max
0≤𝑞′′≤𝑞′+𝑖

{𝑉 (𝑞′′, 𝛿′) −𝑉 (𝑞′, 𝛿′) − 𝑃 (𝑞′′ − 𝑞′)}

= 𝑉 (min{𝑞★(𝛿′), 𝑞′ + 𝑖}, 𝛿′) −𝑉 (𝑞′, 𝛿′) − 𝑃
(
min{𝑞★(𝛿′), 𝑞′ + 𝑖} − 𝑞′

)
,

where the second equality follows from Section 2.1, where we established that the optimum is attained
for 𝑞′′ = min{𝑞★(𝛿), 𝑞′ + 𝑖}. Since, by its construction in Section 2.1, the value function is continuously
differentiable in 𝑞′, a direct calculation reveals that 𝑔 is continuously differentiable in 𝑖 with derivative:

0 ≤ 𝑔𝑖 (𝑖, 𝑞′, 𝛿′) = Σ(min{𝑞★(𝛿), 𝑞′ + 𝑖}, 𝛿′) = max{Σ(𝑞′ + 𝑖, 𝛿′), 0} ≤ max{Σ(𝑞′, 𝛿′), 0}.

The inequality on the right-hand side shows that |𝑔𝑖 | is bounded by an integrable function of (𝑞′, 𝛿′). Hence,
an application of Theorem 2.27 in Folland (1999) shows that∫

(𝑞′ , 𝛿′ )
𝑔(𝑖, 𝑞′, 𝛿′) 𝑑Φ(𝑞′, 𝛿′)

is differentiable with respect to 𝑖 and that its derivative is obtained by differentiating under the integral sign.
The result follows.
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A.3 Proof of Proposition 2
For this proof, pick some 0 < 𝑃 < 𝑃 and 0 < 𝐼 < 𝐼. Now, for all (𝑃, 𝐼) ∈ [𝑃, 𝑃] × [𝐼, 𝐼], define the
transition probablity function (8) over [0, 𝑞] × [𝛿, 𝛿] where 𝑞 > 𝑞★(𝛿 | 𝐼, 𝑃). One sees that 𝑞 has been
chosen sufficiently large so that, for all (𝑃, 𝐼) ∈ [𝑃, 𝑃] × [𝐼, 𝐼], the stationary distribution will belong to
[0, 𝑞] × [𝛿, 𝛿].

Existence, uniqueness, and strong convergence. We rely on Lemma 11.11 and Theorem 11.12 in
SLP, which provide a sufficient condition for existence of the operator 𝑇★𝑁 to be a contraction mapping for
some 𝑁 and guarantee that the desired properties hold. The sufficient condition, labeled “condition M” by
SLP, is that there exists some 𝜀 > 0 and some integer 𝑁 such that, for any Borel set 𝐵 ⊆ [0, 𝑞] × [𝛿, 𝛿],
P𝑁 (𝑞, 𝛿, 𝐵) ≥ 𝜀 for all (𝑞, 𝛿) or P𝑁 (𝑞, 𝛿, 𝐵𝑐) ≥ 𝜀 for all (𝑞, 𝛿). In our setting condition M follows because
through their trades, customers are always able to reach their target holdings in an uniformly bounded number
of trades, so that they eventually transition to the “diagonal” set:

𝐷 ≡ {(𝑞★(𝛿), 𝛿) : 𝛿 ∈ [𝛿, 𝛿]} (15)

Specifically, consider any Borel set 𝐵 of [0, 𝑞] × [𝛿, 𝛿] and pick 𝑁 such that (𝑁 −1)𝐼 ≥ 𝑞★(𝛿), so a customer
reaches her target holding in at most 𝑁 − 1 successive trades with dealers. Then we have that, for all (𝑞, 𝛿):

P𝑁 (𝑞, 𝛿, 𝐵) ≥ P𝑁 (𝑞, 𝛿, 𝐵 ∩ 𝐷) ≥ 𝛾

𝛾 + 𝜆
𝐹 ((𝐵 ∩ 𝐷)𝛿)

(
𝜆

𝛾 + 𝜆

)𝑁−1
,

and where we use the short-hand 𝐴𝛿 to denote the set of 𝛿 such that (𝑞, 𝛿) ∈ 𝐴 for some 𝑞 (the “𝛿-section” of
the set 𝐴). In words, the above inequality states that the probability of reaching 𝐵 in 𝑁 transitions is greater
than the probability of reaching the intersection of 𝐵 with the diagonal set, which is itself greater than the
probability of first drawing a preference shock in the 𝛿-section of 𝐵 ∩ 𝐷, and receiving 𝑁 − 1 successive
trading opportunities, which is sufficient to reach a point in 𝐵 ∩ 𝐷. Likewise, for all (𝑞, 𝛿):

P𝑁 (𝑞, 𝛿, 𝐵𝑐) ≥ P𝑁 (𝑞, 𝛿, 𝐵𝑐 ∩ 𝐷) ≥ 𝛾

𝛾 + 𝜆
𝐹

(
[𝛿, 𝛿]\(𝐵 ∩ 𝐷)𝛿

) ( 𝜆

𝛾 + 𝜆

)𝑁−1
,

since 𝐵𝑐 ∩ 𝐷 = 𝐷\(𝐵 ∩ 𝐷). Since either 𝐹 ((𝐵 ∩ 𝐷)𝛿) ≥ 1/2 or 𝐹
(
[𝛿, 𝛿]\(𝐵 ∩ 𝐷)𝛿

)
≥ 1/2, condition M

holds for

𝜀 =
1
2

𝛾

𝛾 + 𝜆

(
𝜆

𝛾 + 𝜆

)𝑁−1
.

Weak continuity with respect to (𝑷, 𝑰). One obtains weak continuity with respect to (𝑃, 𝐼) ∈ [𝑃, 𝑃]×
[𝐼, 𝐼] by an application of Theorem 12.13 in SLP. The first condition of the theorem is that the state space is
compact, which is true here by assumption. The second condition is that the transition probability function
is weakly continuous in (𝑞, 𝛿, 𝑃, 𝐼), which follows by an application of Theorem 12.3, keeping in mind that
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𝑞★(𝛿 | 𝑃, 𝐼) is continuous in (𝛿, 𝑃, 𝐼) since it uniquely solve Σ(𝑞, 𝛿 | 𝑃, 𝐼) = 0, where Σ(𝑞, 𝛿 | 𝑃, 𝐼) is
continuous in (𝑞, 𝛿, 𝑃, 𝐼). The third condition is the that the operator 𝑇★ has a unique fixed point for all
(𝑃, 𝐼), which we established in the previous paragraph.

Monotonicity in 𝑷. Consider, for any bounded and measurable function, the conditional expectation
operator:

𝑇 [𝑔] (𝑞, 𝛿 | 𝑃, 𝐼) =
∫
(𝑞′ , 𝛿′ )

𝑔(𝑞′, 𝛿′ | 𝑃, 𝐼) P (𝑞, 𝛿, 𝑑𝑞′, 𝑑𝛿′ | 𝑃, 𝐼)

=
𝛾

𝛾 + 𝜆

∫
𝛿′
𝑔(𝑞, 𝛿′ | 𝑃, 𝐼) 𝑑𝐹 (𝛿′) + 𝜆

𝛾 + 𝜆
𝑔
(
min{𝑞★(𝛿 | 𝑃, 𝐼), 𝑞 + 𝐼}, 𝛿 | 𝑃, 𝐼

)
.

Since 𝑞★(𝛿 | 𝑃, 𝐼) is decreasing in 𝑃, one sees that the operator preserves the following joint monotonicity
property: for any bounded measurable function 𝑔(𝑞, 𝛿 | 𝑃, 𝐼) that is increasing in 𝑞 and decreasing in 𝑃,
then 𝑇 [𝑔] (𝑞, 𝛿 | 𝑃, 𝐼) is also increasing in 𝑞 and decreasing in 𝑃. By induction, it follows that this is also
true for the 𝑛-transitions ahead conditional expectation: 𝑇𝑛 [𝑔] (𝑞, 𝛿 | 𝑃, 𝐼) is increasing in 𝑞 and decreasing
in 𝑃 as well. In particular, if 𝑃′ ≥ 𝑃:

𝑇𝑛 [𝑔] (𝑞, 𝛿 | 𝑃′, 𝐼) ≤ 𝑇𝑛 [𝑔] (𝑞, 𝛿 | 𝑃, 𝐼).

Given the strong convergence result established before, we can pass to the limit and obtain∫
𝑔(𝑞′, 𝛿′ | 𝑃, 𝐼) 𝑑Φ(𝑞′, 𝛿′ | 𝑃, 𝐼) ≤

∫
𝑔(𝑞′, 𝛿′ | 𝑃, 𝐼) 𝑑Φ(𝑞′, 𝛿′ | 𝑃, 𝐼),

as claimed.

A.4 Proof of Theorem 1
Lower and upper bounds on target holdings. Equation (13) evaluated at 𝑞★(𝛿) implies that
𝑢𝑞 (𝑞★(𝛿), 𝛿) − 𝑟𝑃 ≤ 0, from which it follows that, for all 𝛿 ∈ [𝛿, 𝛿]:

𝑞★(𝛿) ≥ 𝑢−1
𝑞

(
𝑟𝑃, 𝛿

)
. (16)

Now consider the Bellman equation for Σ(𝑞, 𝛿) evaluated at 𝑞 ≥ 𝑞★(𝛿) so that max{Σ(𝑞 + 𝐼, 𝛿), 0} = 0:

Σ(𝑞, 𝛿) ≤
𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃

𝑟 + 𝛾 + 𝜆(1 − 𝜃) +
𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)Σ(𝑞, 𝛿) =⇒ Σ(𝑞, 𝛿) ≤
𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃

𝑟 + 𝜆(1 − 𝜃) .
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Letting 𝑞 ↓ 𝑞★(𝛿) we obtain that 𝑢𝑞 (𝑞★(𝛿), 𝛿) − 𝑟𝑃 ≥ 0, implying that for all 𝛿 ∈ [𝛿, 𝛿]

𝑞★(𝛿) ≤ 𝑢−1
𝑞

(
𝑟𝑃, 𝛿

)
. (17)

Market-clearing given inventory. We now establish that, given some 𝐼 ∈ (0, 𝑠/𝜇), there is a unique
price 𝑃(𝐼) such that the market-clearing condition (9) holds. First, since the stationary distribution of asset
holdings Φ(𝑞′, 𝛿′ | 𝑃, 𝐼) is weakly continuous and decreasing in 𝑃, it follows that the left-hand side of the
market-clearing condition is continuous and decreasing in 𝑃 as well. Second, the lower and the upper bound
of equations (16) and (17) imply that

𝑢−1
𝑞

(
𝑟𝑃, 𝛿

)
≤
∫
(𝑞′ , 𝛿′ )

𝑞′ 𝑑Φ(𝑞′, 𝛿′ | 𝑃, 𝐼) ≤ 𝑢−1
𝑞

(
𝑟𝑃, 𝛿

)
.

Together with the Inada condition, this means that the amount of asset held by customers goes to infinity as
𝑃 → 0, and to zero as 𝑃 → ∞. Hence, an application of the Intermediate Value Theorem implies that the
market clearing equation (9) has at least one solution.

To establish uniqueness we show that the left-hand side of (9) is a strictly decreasing function of 𝑃. To
do so, first note that, by stationarity, trading between customers and dealers keeps the amount of asset held
by customers sector constant:∫

(𝑞′ , 𝛿′ )
𝑞′ 𝑑Φ(𝑞′, 𝛿′ | 𝑃, 𝐼) =

∫
(𝑞′ , 𝛿′ )

min{𝑞★(𝛿′ | 𝑃, 𝐼), 𝑞′ + 𝐼} 𝑑Φ(𝑞′, 𝛿′ | 𝑃, 𝐼) (18)

Hence for any two 0 < 𝑃1 < 𝑃2:∫
(𝑞′ , 𝛿′ )

𝑞′ 𝑑Φ(𝑞′, 𝛿′ | 𝑃1, 𝐼) −
∫
(𝑞′ , 𝛿′ )

𝑞′ 𝑑Φ(𝑞′, 𝛿′ | 𝑃2, 𝐼)

=

∫
(𝑞′ , 𝛿′ )

min{𝑞★(𝛿′ | 𝑃1, 𝐼), 𝑞′ + 𝐼} 𝑑Φ(𝑞′, 𝛿′ | 𝑃1, 𝐼) −
∫
(𝑞′ , 𝛿′ )

min{𝑞★(𝛿′ | 𝑃2, 𝐼), 𝑞′ + 𝐼} 𝑑Φ(𝑞′, 𝛿′ | 𝑃2, 𝐼)

≥
∫
(𝑞′ , 𝛿′ )

(
min{𝑞★(𝛿′ | 𝑃1, 𝐼), 𝑞′ + 𝐼} − min{𝑞★(𝛿′ | 𝑃2, 𝐼), 𝑞′ + 𝐼}

)
𝑑Φ(𝑞′, 𝛿′ | 𝑃1, 𝐼)

≥
∫
(𝑞′ , 𝛿′ ) ∈𝐷

(
min{𝑞★(𝛿′ | 𝑃1, 𝐼), 𝑞′ + 𝐼} − min{𝑞★(𝛿′ | 𝑃2, 𝐼), 𝑞′ + 𝐼}

)
𝑑Φ(𝑞′, 𝛿′ | 𝑃1, 𝐼)

=

∫
(𝑞′ , 𝛿′ ) ∈𝐷

(
𝑞★(𝛿 | 𝑃1, 𝐼) − 𝑞★(𝛿 | 𝑃2, 𝐼)

)
𝑑Φ(𝑞′, 𝛿′ | 𝑃1, 𝐼) > 0,

where: the equality on the second line follows from (18); the inequality on the third line follows from the
fact that the stationary distribution is decreasing in 𝑃; the inequality on the fourth line follows because
target holdings are decreasing in 𝑃 so that the integrand is positive; the equality on the last line follows
because, on the diagonal set 𝐷 which we defined earlier in (15), (𝑞′, 𝛿′) = (𝑞★(𝛿′), 𝛿′). Finally, the strict
inequality on the last line follows because target holdings are strictly decreasing in 𝑃 and the diagonal set 𝐷
has strictly positive measure. Indeed, for any 𝑁 such that 𝑁𝐼 ≥ 𝑞★(𝛿), it takes at most 𝑁 consecutive trading
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opportunities to reach the diagonal set from any (𝑞′, 𝛿′) in the support of the stationary distribution. Hence
P(𝑞′, 𝛿′, 𝐷) ≥ (𝜆/(𝛾 + 𝜆))𝑁 . Now using stationarity we have that

Φ(𝐷) = 𝑇★ [Φ] (𝐷) =
∫
(𝑞′ , 𝛿′ )

P(𝑞′, 𝛿′, 𝐷) 𝑑Φ(𝑞′, 𝛿′) ≥
(

𝜆

𝜆 + 𝛾

)𝑁
> 0.

Taken together, we obtain that the market-clearing condition has a unique solution 𝑃(𝐼). Given uniqueness
of a solution and given the continuity of the market-clearing condition, it follows that 𝑃(𝐼) is continuous.

The set of 𝑣 consistent with active intermediation. Let𝑉 (𝐼) denote the function defined in equation
(10). Note that, in any equilibrium, 𝑃 > 0 implies by (16) that 𝑞★(𝛿) > 0 and so that 𝜇𝐼 < 𝑠. Thus, the set
of 𝑣 consistent with active intermediation is equal to the range of 𝑉 (𝐼) over the open interval (0, 𝑠/𝜇). As
𝐼 → 𝑠/𝜇, customers’ average asset holding must go to zero, implying that the same is true for the smallest
of customer’s asset holdings, i.e., 𝑞★(𝛿 | 𝑃(𝐼), 𝐼) → 0. Therefore, (16) implies that 𝑢−1

𝑞 (𝑟𝑃(𝐼), 𝛿) → 0 and,
given Inada conditions, that 𝑃(𝐼) → ∞. It thus follows from (17) that 𝑞★(𝛿 | 𝑃(𝐼), 𝐼) → 0 and that, for all
(𝑞′, 𝛿′) in the support of the distribution 𝑞′ + 𝐼 ≥ 𝑞★(𝛿 | 𝑃(𝐼), 𝐼) + 𝐼 > 𝑞★(𝛿 | 𝑃(𝐼), 𝐼) ≥ 𝑞★(𝛿 | 𝑃(𝐼), 𝐼).
Hence, the inventory in advance never binds and 𝑉 (𝐼) = 𝑟𝑃(𝐼). We conclude that lim𝐼→𝑠/𝜇 𝑉 (𝐼) = +∞.

Next, recall that since the marginal trade surplus is decreasing in asset holdings and decreasing in
preference shocks, we have that

Σ(𝑞′, 𝛿′) ≤ Σ(𝑞★(𝛿 | 𝑃(𝐼), 𝐼), 𝛿)

for all (𝑞′, 𝛿′) in the support of the stationary distribution. Keeping in mind that Σ(𝑞★(𝛿 | 𝑃(𝐼), 𝐼), 𝛿) ≥ 0,
we obtain from the Bellman equation of the marginal trade surplus that:

Σ(𝑞★(𝛿 | 𝑃(𝐼), 𝐼), 𝛿) ≤
𝑢𝑞 (𝑞★(𝛿 | 𝑃(𝐼), 𝐼), 𝛿) − 𝑟𝑃(𝐼)

𝑟 + 𝛾 + 𝜆(1 − 𝜃) + 𝛾 + 𝜆(1 − 𝜃)
𝑟 + 𝛾 + 𝜆(1 − 𝜃)Σ(𝑞

★(𝛿 | 𝑃(𝐼), 𝐼), 𝛿).

Simplifying and using the lower bound for asset holdings in equation (16), we obtain

Σ(𝑞′, 𝛿′) ≤
𝑢𝑞

(
𝑢−1
𝑞 (𝑟𝑃(𝐼), 𝛿), 𝛿

)
− 𝑟𝑃(𝐼)

𝑟
.

Now the upper bound on asset holdings (17), together with market clearing, implies 𝑟𝑃(𝐼) ≤ 𝑢𝑞 (𝑠 − 𝜇𝐼, 𝛿)
otherwise all asset holdings would be less than 𝑠 − 𝜇𝐼. Likewise, 𝑟𝑃(𝐼) ≥ 𝑢𝑞 (𝑠 − 𝜇𝐼, 𝛿). Taken together, we
obtain an upper bound on the marginal trade surplus:

Σ(𝑞′, 𝛿′) ≤
𝑢𝑞

(
𝑢−1
𝑞 (𝑢𝑞 (𝑠 − 𝜇𝐼, 𝛿), 𝛿), 𝛿

)
− 𝑢𝑞 (𝑠 − 𝜇𝐼, 𝛿)

𝑟
.

This implies that the marginal trade surplus remains bounded above as 𝐼 → 0 and, in turns, that𝑉 (𝐼) remains
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bounded below as 𝐼 → 0. Altogether this means that:

𝑣 ≡ inf
𝐼∈ (0,𝑠/𝜇)

𝑉 (𝐼) > −∞,

and we are done.
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B The Model Without Inventory Constraints
To better understand the unique implication of our model, we study the model without inventory-in-advance
constraints. Lemma 2 and 3 are versions of the results of Lagos and Rocheteau (2009) and Pinter and Üslü
(2021). But Lemma 4 and 5, on the symmetry properties of this model, are new.

The results of this section are useful for several reasons. First, they provide natural initial conditions for
our computations. Second, they help motivate the use of certain moments for parameter identification – in
particular, they highlight the role played by the elasticity of the utility function in generating asymmetries in
value-weighted transaction costs for purchases and sales. Third, they allow us to highlight unique properties
of the model with inventory-in-advance constraint: in particular, in Lemma 4, we show that, without inventory
constraints, the number of purchases and the number of sales are equal. Hence, in our model, any asymmetry
in the number of sales and purchases is due to the presence of an inventory constraint.

B.1 Marginal surplus
In the model without inventory constraint, the Bellman equation for the marginal surplus reduces to:

(𝑟 + 𝛾 + 𝜆(1 − 𝜃))Σ(𝑞, 𝛿) = 𝑢𝑞 (𝑞, 𝛿) − 𝑟𝑃 + 𝛾E𝐹 [Σ(𝑞, 𝛿′)] .

Taking expectations on both sides we obtain that:

E𝐹 [Σ(𝑞, 𝛿′)] =
E𝐹

[
𝑢𝑞 (𝑞, 𝛿′)

]
−𝑟𝑃

𝑟 + 𝜆(1 − 𝜃)

Plugging back into the Bellman equation, we obtain after a few lines of algebra, we obtain the following
results:

Lemma 2. In the model without inventory-in-advance constraint, the marginal surplus is

(𝑟 + 𝜆(1 − 𝜃))Σ(𝑞, 𝛿) = 𝑟 + 𝜆(1 − 𝜃)
𝑟 + 𝛾 + 𝜆(1 − 𝜃) 𝑢𝑞 (𝑞, 𝛿) +

𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)E
𝐹
[
𝑢𝑞 (𝑞, 𝛿′)

]
− 𝑟𝑃.

In particular, for all 𝜂 > 0 let 𝑢(𝑞, 𝛿) = 𝑞1−1/𝜂 𝛿
1−1/𝜂 if 𝜂 ≠ 1 and 𝑢(𝑞, 𝛿) = log(𝑞)𝛿 if 𝜂 = 1. Then, the marginal

surplus solves

(𝑟 + 𝜆(1 − 𝜃))Σ(𝑞, 𝛿) = 𝐷 (𝛿)𝑞−1/𝜂 − 𝑟𝑃,

where

𝐷 (𝛿) ≡ 𝑟 + 𝜆(1 − 𝜃)
𝑟 + 𝛾 + 𝜆(1 − 𝜃) 𝛿 +

𝛾

𝑟 + 𝛾 + 𝜆(1 − 𝜃)E
𝐹 [𝛿′] .
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B.2 Stationary distribution
In this Section, we derive a closed form solution for the steady-state distribution of asset holdings and
preference shocks. Lagos and Rocheteau (2009) first proposed a solution for the case of a discrete distribution
of preference shocks, and Pinter and Üslü (2021) extended this result to the case of an arbitrary distribution.

Lemma 3. In the model without inventory-in-advance constraint, the cumulative measure of customers with
holding less than 𝑞 and utility type less than 𝛿 is:

Φ(𝑞′, 𝛿′) = 𝛾

𝛾 + 𝜆
𝐹 (𝛿★(𝑞′))𝐹 (𝛿′) + 𝜆

𝛾 + 𝜆
𝐹 (min{𝛿★(𝑞′), 𝛿′}). (19)

In particular, for any integrable function ℎ(𝑞′, 𝛿′), it holds that:∫
(𝑞′ , 𝛿′ )

ℎ(𝑞′, 𝛿′) 𝑑Φ(𝑞′, 𝛿′)

=
𝛾

𝛾 + 𝜆

∫
(𝛿, 𝛿′ )

ℎ(𝑞★(𝛿), 𝛿′) 𝑑𝐹 (𝛿) 𝑑𝐹 (𝛿′) + 𝜆

𝛾 + 𝜆

∫
𝛿′
ℎ(𝑞★(𝛿′), 𝛿′) 𝑑𝐹 (𝛿′). (20)

Perhaps the formula that is easiest to interpret is (20), which allows to calculate any moment of the
distribution. It shows that the joint distribution of asset holding can be viewed as a mixture of two
distributions. First, with probability 𝛾/(𝛾 + 𝜆), the distribution is random: a customer of type 𝛿′ is endowed
with a random asset holding, 𝑞★(𝛿), where 𝛿 is drawn according to the distribution 𝐹. Second, with
probability 𝜆/(𝛾 + 𝜆), the distribution is perfect: a customer of type 𝛿′ is endowed with her target asset
holding, 𝑞★(𝛿′).

Proof of equation (19). We characterize Φ(𝑞, 𝛿) in two steps. First, we derive the measure of customers
with holdings less than 𝑞,∫

(𝑞′ , 𝛿′ )
I{𝑞′≤𝑞} 𝑑Φ(𝑞′, 𝛿′).

In steady state, the gross outflow from the set of customers with holding less than 𝑞 must equal the inflow:

𝜆

∫
(𝑞′ , 𝛿′ )

I{𝑞′≤𝑞} 𝑑Φ(𝑞′, 𝛿′) = 𝜆

∫
𝛿′
I{𝑞★ (𝛿′ )≤𝑞} 𝑑𝐹 (𝛿′)

The left-hand side is the gross outflow, created by customers who contact the market with current holding
less than 𝑞. The right-hand side is the gross inflow, generated by all customers with optimal holding less
than 𝑞 who contact dealers. Clearly, 𝑞★(𝛿) ≤ 𝑞 if and only if 𝛿 ≤ 𝛿★(𝑞) where 𝛿★(𝑞) ≡ (𝑞★)−1(𝑞). Hence,
the above steady-state equation writes:∫

(𝑞′ , 𝛿′ )
I{𝑞′≤𝑞} 𝑑Φ(𝑞′, 𝛿′) = 𝐹 (𝛿★(𝑞)).
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This preliminary step facilitates the derivation of the entire distribution. Indeed, the outflow-inflow equation
for Φ(𝑞, 𝛿) can now be written:

(𝛾 + 𝜆)Φ(𝑞, 𝛿) = 𝛾𝐹 (𝛿★(𝑞))𝐹 (𝛿) + 𝜆

∫
I{ 𝛿′≤ 𝛿 and 𝑞★ (𝛿 )≤𝑞} 𝑑𝐹 (𝛿′).

The left-hand side is the gross outflow, created by all customers with type less than 𝛿 and holding less than
𝑞 who either change type or contact dealers. The first term on the right-hand side is the gross inflow created
by customers with holding less than 𝑞 who draw a new type less than 𝛿. The second term is the gross inflow
created by trade with dealers: customers with utility type less than 𝛿 and optimal holding 𝑞★(𝛿) less than 𝑞.
Recalling the definition of 𝛿★(𝑞), equation (19) follows.

Proof of equation (20). By Theorem 3.6.1 in Bogachev (2007), it follows that:∫
𝑞′ , 𝛿′

ℎ(𝑞′, 𝛿′) 𝑑Φ(𝑞′, 𝛿′) =
∫
𝛿, 𝛿′

ℎ(𝑞★(𝛿), 𝛿′) 𝑑Ψ(𝛿, 𝛿′),

where

Ψ(𝛿, 𝛿′) = Φ(𝑞★(𝛿), 𝛿′)

=
𝛾

𝛾 + 𝜆
𝐹 (𝛿)𝐹 (𝛿′) + 𝜆

𝛾 + 𝜆
𝐹 (min{𝛿, 𝛿′})

=
𝛾

𝛾 + 𝜆

∫ 𝛿

𝛿

∫ 𝛿′

𝛿

𝑑𝐹 (𝑥) 𝑑𝐹 (𝑦) + 𝜆

𝛾 + 𝜆

∫ 𝛿

0
𝑑𝐹 (𝑥)I{𝑥≤ 𝛿′ }

=
𝛾

𝛾 + 𝜆

∫ 𝛿

𝛿

∫ 𝛿′

𝛿

𝑑𝐹 (𝑥) 𝑑𝐹 (𝑦) + 𝜆

𝛾 + 𝜆

∫ 𝛿

0
𝑑𝐹 (𝑥)

∫ 𝛿′

0
𝑑I{𝑥≤𝑦} ,

where the last line follows because I{𝑥≤ 𝛿′ } =
∫ 𝛿′

0 𝑑I{𝑥≤𝑦} , where 𝑦 ↦→ 𝑑I{𝑥≤𝑦} is the Dirac measure centered
at point 𝑥. We thus obtain that:

𝑑Ψ(𝛿, 𝛿′) = 𝛾

𝛾 + 𝜆
𝑑𝐹 (𝛿) 𝑑𝐹 (𝛿′) + 𝜆

𝛾 + 𝜆
𝑑𝐹 (𝛿)𝑑I{ 𝛿≤ 𝛿′ } ,

and equation (20) follows.

B.3 Buy-sell symmetry
In this section, we show that, in the model with no inventory constraints, the number of purchases and sales
are equal. With a continuum of customers, the natural measure of “number of purchases” is the flow of
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purchases per unit of time:

𝜆

∫
(𝑞′ , 𝛿′ )

I{𝑞′<𝑞★ (𝛿′ ) } 𝑑Φ(𝑞′, 𝛿′).

Using equation (20) with ℎ(𝑞′, 𝛿′) = I{𝑞★ (𝛿′ )>𝑞′ } , we obtain that the flow of purchase writes:

𝜆𝛾

𝛾 + 𝜆

∫
(𝛿, 𝛿′ )

I{𝑞★ (𝛿 )<𝑞★ (𝛿′ ) } 𝑑𝐹 (𝛿) 𝑑𝐹 (𝛿′) +
𝜆2

𝛾 + 𝜆

∫
𝛿′
I{𝑞★ (𝛿′ )<𝑞★ (𝛿′ ) } 𝑑𝐹 (𝛿′).

Since the target holding function is strictly increasing, the indicator in the first integral simplifies to I{ 𝛿<𝛿′ } .
Moreover, it is clear that the indicator in the second integral is zero. Hence, the flow of purchase is:

∫
(𝛿, 𝛿′ )

I{ 𝛿<𝛿′ }𝑑𝐹 (𝛿) 𝑑𝐹 (𝛿′) =
𝜆𝛾

𝜆 + 𝛾

∫
𝛿

𝑑𝐹 (𝛿) (1 − 𝐹 (𝛿)) = 𝜆𝛾

2 (𝜆 + 𝛾)
©­«1 −

∑︁
𝛿∈[ 𝛿, 𝛿 ]

Δ𝐹 (𝛿)2ª®¬ .
where Δ𝐹 (𝛿) = 𝐹 (𝛿) −𝐹 (𝛿−) and the last equality follows from the integration by part formula for functions
of bounded variations, which can be found in Theorem 6.2.2 of Carter and Van Brunt (2000). Following the
same steps we obtain the flow of sales:

𝜆

∫
(𝑞′ , 𝛿′ )

I{𝑞′>𝑞★ (𝛿′ ) } 𝑑Φ(𝑞′, 𝛿′) = 𝜆𝛾

𝜆 + 𝛾

∫
(𝛿, 𝛿′ )

I{ 𝛿>𝛿′ } 𝑑𝐹 (𝛿) 𝑑𝐹 (𝛿′),

which is clearly equal to the flow of purchase. Taking stock:

Lemma 4. In the model without inventory-in-advance constraint, the flow of purchases and the flow of sales
are both equal to

𝜆𝛾

2(𝜆 + 𝛾)
©­«1 −

∑︁
𝛿∈[ 𝛿, 𝛿 ]

Δ𝐹 (𝛿)2ª®¬ .
Correspondingly, the average trade size of a sale and of a purchase are also equal.

B.4 Transaction cost asymmetry
We now investigate a different source of asymmetry: the average proportional transaction cost incurred by
customers who purchase the asset vs. those who want to sell it. We show that, in the model without an
inventory-in-advance constraint, the transaction costs are in general asymmetric. In addition the direction of
the asymmetry depends on the elasticity of the utility function 𝑢(𝑞, 𝛿).

Let 𝑊 denote the total value of purchases which, by market clearing, must be equal to the total value of
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sales. The value weighted proportional transaction costs for purchase writes:

TC𝑝 =

∫
(𝑞′ , 𝛿′ )

I{𝑞★ (𝛿′ )>𝑞′ }
𝑃 (𝑞★(𝛿′) − 𝑞′)

𝑊
𝜃
𝑉 (𝑞★(𝛿′), 𝛿′) −𝑉 (𝑞′, 𝛿′) − 𝑃(𝑞★(𝛿′) − 𝑞′)

𝑞★(𝛿′) − 𝑞′
𝑑Φ(𝑞′, 𝛿′)

=
𝛾

𝛾 + 𝜆

𝜃𝑃

𝑊

∫
𝛿<𝛿′

[
𝑉 (𝑞★(𝛿′), 𝛿′) −𝑉 (𝑞★(𝛿), 𝛿′) − 𝑃(𝑞★(𝛿′) − 𝑞★(𝛿))

]
𝑑𝐹 (𝛿)𝑑𝐹 (𝛿′),

where the second equality follows from equation (20). This formula shows that the value weighted transaction
cost is proportional to the total surplus generated by purchases. Likewise, we obtain that the value weighted
proportional transaction costs for sales writes:

TC𝑠 =

∫
(𝑞′ , 𝛿′ )

I{𝑞★ (𝛿′ )<𝑞′ }
𝑃 (𝑞′ − 𝑞★(𝛿′))

𝑊
𝜃
𝑉 (𝑞★(𝛿′), 𝛿′) −𝑉 (𝑞′, 𝛿′) − 𝑃(𝑞★(𝛿′) − 𝑞′)

𝑞′ − 𝑞★(𝛿′) 𝑑Φ(𝑞′, 𝛿′)

=
𝛾

𝜆 + 𝛾

𝜃𝑃

𝑊

∫
𝛿′<𝛿

[
𝑉 (𝑞★(𝛿′), 𝛿′) −𝑉 (𝑞★(𝛿), 𝛿′) − 𝑃(𝑞★(𝛿′) − 𝑞★(𝛿))

]
𝑑𝐹 (𝛿)𝑑𝐹 (𝛿′)

=
𝛾

𝜆 + 𝛾

𝜃𝑃

𝑊

∫
𝛿<𝛿′

[
𝑉 (𝑞★(𝛿), 𝛿) −𝑉 (𝑞★(𝛿′), 𝛿) − 𝑃(𝑞★(𝛿) − 𝑞★(𝛿′))

]
𝑑𝐹 (𝛿)𝑑𝐹 (𝛿′)

= − 𝛾

𝜆 + 𝛾

𝜃𝑃

𝑊

∫
𝛿<𝛿′

[
𝑉 (𝑞★(𝛿′), 𝛿) −𝑉 (𝑞★(𝛿), 𝛿) − 𝑃(𝑞★(𝛿′) − 𝑞★(𝛿))

]
𝑑𝐹 (𝛿)𝑑𝐹 (𝛿′).

where the second to last line renames the variables of integration, replacing 𝛿 by 𝛿′ and vice versa.
Subtracting the above expressions for TC𝑝 and TC𝑠, and writing the surplus as an integral of marginal

surplus, we sees that transaction costs are larger for purchases than for sales, TC𝑝 > TC𝑠, if

∫ 𝑞★ (𝛿′ )

𝑞★ (𝛿 )
[Σ(𝑞, 𝛿) + Σ(𝑞, 𝛿′)] 𝑑𝑞 > 0, (21)

for all 𝛿 < 𝛿′ and, vice versa, TC𝑝 < TC𝑠 if the above expression is strictly negative for all 𝛿 < 𝛿′.
For intuition consider any pair of target holdings 𝑞★(𝛿) and 𝑞★(𝛿′), 𝛿 < 𝛿′. A customer will purchase

the quantity 𝑞★(𝛿′) − 𝑞★(𝛿) if her current asset holding is 𝑞★(𝛿) and her current utility type is 𝛿′. With
Nash-bargaining, transaction costs are proportional to the surplus, which can calculated by integrating below
the marginal surplus curve, Σ(𝑞, 𝛿′). Likewise, a customer will sell the same quantity 𝑞★(𝛿′) − 𝑞★(𝛿) when
her current asset holding is 𝑞★(𝛿′) and her current utility type is 𝛿. In that case, the transaction cost is
obtained by integrating below the marginal surplus curve −Σ(𝑞, 𝛿). Condition (21) ensures that the integral
is larger for the purchase than for the sale. Given buy-sell symmetry, there is an equal number of purchases
and sales of this particular quantity, and the result follows.

Our main result in this section is:
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Lemma 5. Suppose that the utility function is isoelastic, 𝑢(𝑞, 𝛿) = 𝑞1−1/𝜂

1−1/𝜂 𝛿. Then:

TC𝑝



> TC𝑠 if 𝜂 < 2

= TC𝑠 if 𝜂 = 2

< TC𝑠 if 𝜂 > 2.

With an iso-elastic utility function, the marginal surplus has a simple closed-form solution shown in
Lemma 2. Then, condition (21) writes:

1
2
(𝐷 (𝛿) + 𝐷 (𝛿′))

(
𝑞★(𝛿′)1−1/𝜂

1 − 1/𝜂 − 𝑞★(𝛿)1−1/𝜂

1 − 1/𝜂

)
− 𝑟𝑃

(
𝑞★(𝛿′) − 𝑞★(𝛿)

)
> 0.

Using that target holdings have zero marginal surplus, we have that𝐷 (𝛿)𝑞★(𝛿)−1/𝜂 = 𝐷 (𝛿′)𝑞★(𝛿′)−1/𝜂 = 𝑟𝑃,
implying that target holdings are

𝑞★(𝛿) =
(
𝐷 (𝛿)
𝑟𝑃

)−𝜂

and 𝑞★(𝛿′) =
(
𝐷 (𝛿′)
𝑟𝑃

)−𝜂

.

Plugging back, and assuming for now that 𝜂 ≠ 1, we can factor out the price 𝑟𝑃 and, after letting 𝑥 ≡
𝐷 (𝛿′)/𝐷 (𝛿), we find that condition (21) holds for all 𝛿′ > 𝛿 if and only if

𝑓 (𝑥) > 0 for all 𝑥 > 1, where 𝑓 (𝑥) ≡ 𝑥 + 1
2

𝑥𝜂−1 − 1
1 − 1/𝜂 − (𝑥𝜂 − 1) .

Taking derivatives twice, we obtain that:

𝑑𝑓

𝑑𝑥
=
𝜂

2

(
𝑥𝜂−1 − 1
𝜂 − 1

+ 𝑥𝜂−2 − 𝑥𝜂−1
)

𝑑2 𝑓

𝑑𝑥2 =
𝜂

2
𝑥𝜂−3 (2 − 𝜂) (𝑥 − 1) .

Hence, 𝑑𝑓 /𝑑𝑥(𝑥) = 0 when 𝑥 = 1, is strictly increasing in 𝑥 if 𝜂 < 2, is identically equal to zero if 𝜂 = 2,
and is strictly decreasing if 𝜂 > 2. Since 𝑓 (1) = 0 as well, it thus follows that, for 𝑥 > 1, 𝑓 (𝑥) > 0 if 𝜂 < 2,
𝑓 (𝑥) = 0 if 𝜂 = 2 and 𝑓 (𝑥) < 0 if 𝜂 > 2. The result follows. The log case 𝜂 = 1 can be addressed separately.
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C Sell-to-Buy Ratio: Adjustment for Order Imbalance
Suppose that, over some period of time, we index customer purchases by 𝑏 ∈ {1, 2, ..., 𝑁𝐵} and customer
sales by 𝑠 ∈ {1, 2, ..., 𝑁𝑆}. The total quantity of customer purchases and sales are:

𝑄𝐵 =

𝑁𝐵∑︁
𝑏=1

𝑞𝑏, and 𝑄𝑆 =

𝑁𝑆∑︁
𝑠=1

𝑞𝑠,

where 𝑞 is the trade quantity. The average trade size for purchases and sales are:

𝑄𝐵 =
1
𝑁𝐵

𝑁𝐵∑︁
𝑏=1

𝑞𝑏, and 𝑄𝑆 =
1
𝑁𝑆

𝑁𝑆∑︁
𝑠=1

𝑞𝑠 .

If the market is “balanced” during that time period, i.e., 𝑄𝐵 = 𝑄𝑆 and dealers do not accumulate net
inventories, we have:

𝑁𝐵𝑄𝐵 = 𝑁𝑆 𝑄𝑆 =⇒ 𝑁𝑆

𝑁𝐵

=
𝑄𝐵

𝑄𝑆

.

However, in the data, the market is not always balanced. Suppose, for example, that 𝑄𝑆 > 𝑄𝐵. Then,
the quantity 𝑄𝑆 − 𝑄𝐵 > 0 is absorbed on dealers’ balance sheets to clear the market, and a quantity 𝑄𝐵 is
sold to customers. We further assume that the average of trade size is the same for both portions of the sale
volume, 𝑄𝑆 − 𝑄𝐵 and 𝑄𝐵. Let 𝑁̂𝑆 and 𝑁̂𝐵 be the number of customer sales and purchases that do not stay
on dealers’ balance sheets. Then, we have:

𝑁̂𝑆 = 𝑁𝑆

𝑄𝐵

𝑄𝑆

, and 𝑁̂𝐵 = 𝑁𝐵.

In general, to adjust for order imbalance, we redefine the number of sales and purchases, 𝑁𝑆 and 𝑁𝐵, as:

𝑁̂𝑆 = 𝑁𝑆 × min
{
𝑄𝐵

𝑄𝑆

, 1
}
, and 𝑁̂𝐵 = 𝑁𝐵 × min

{
𝑄𝑆

𝑄𝐵

, 1
}
.

We can see that, by construction,

𝑁̂𝑆

𝑁̂𝐵

=
𝑄𝐵

𝑄𝑆

.

In Figure 5, we plot the adjusted ratio 𝑁̂𝑆

𝑁̂𝐵
.
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