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Abstract

In over-the-counter (OTC) markets, customers search for counterparties. Little is known about
this process, however, because existing data is comprised of transaction records, which are
only informative about the end of a successful search. Leveraging data from the leading
trading platform for corporate bonds, we offer evidence about the search process: we analyze
customers’ repeated attempts to trade (successful and unsuccessful). We estimate that it takes
two to three days to complete a transaction after an unsuccessful attempt, with substantial
variation depending on trade and customer characteristics. Our analysis offers insights into the
sources of trading delays in OTC markets.
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1 Introduction

Over-the-counter (OTC) markets play a key role in the U.S. financial system. They include
most fixed income securities, asset-backed securities, repurchase agreements, and various types
of derivatives, along with a significant fraction of equity trading volume (Weill, 2020). Unlike
exchange-based markets, OTC markets are decentralized: participants must find a willing coun-
terparty and agree on the terms of trade. The prevailing wisdom is that there are frictions in this
process and, as a result, completing a trade often takes time.

However, in contrast to other frictional markets, such as the labor or housing markets, little is
known about the process that unfolds while an investor searches for a suitable offer. The reason
is simple: existing data from OTC markets is comprised of transaction records, which contain
information about the time and price at which a trade occurred, but not about the time that investors
spent searching. Hence, empirical estimates of the time it takes to trade in OTC markets—along
with an understanding of the sources of these trading delays—have remained elusive.

In this paper, we leverage a proprietary data set that allows us to unpack the sequential search
process of investors in one of the most studied OTC financial markets—the market for U.S.
corporate bonds. The data provides a complete record of all inquiries made by customers and the
corresponding replies from dealers on the leading electronic trading platform for corporate bonds,
MarketAxess (MKTX). We supplement this data with transactions recorded by the Trade Reporting
and Compliance Engine (TRACE), which allows us to find inquiries that failed to result in trade on
the electronic platform but were ultimately successful through other channels (i.e., “voice” trades).
Crucially, by observing both successful and unsuccessful inquiries, the data allows us to estimate
how long it takes a customer to trade and how this length of time depends on the characteristics of
both the order and the customer. Moreover, by studying the behavior of customers and dealers over
the course of the search process, our analysis offers new insights into the sources of trading delays.

At first glance, it might seem counterintuitive to use data from an electronic platform to study
the magnitude and sources of trading delays in OTC markets. After all, one of the primary reasons
for introducing an electronic platform is to eliminate trading frictions. We argue that this data set
is a natural starting point for several important reasons. First, at a practical level, it is the only
data source with direct observations of the time that investors spend trying to execute a particular
trade, the various strategies they employ over the search process, and the corresponding behavior
of dealers in response to repeated inquiries. Moreover, investors typically use MKTX for the most
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liquid trades—namely, smaller quantities of investment grade bonds—so that our estimates can
be seen as a natural lower bound on time-to-trade. Finally, since electronic platforms eliminate
many obvious physical barriers to finding a counterparty (such as the time-consuming process of
sequentially contacting dealers), the discovery of trading delays within a market with an electronic
platform offers a window into the deeper frictions underlying the sequential search process.

Our analysis proceeds in three steps. First, we document that executing a trade often requires
multiple attempts or “inquiries,” and thus organize the data in a way that captures the sequential
nature of investors’ search process. For example, we find that inquiries fail to result in trade about
30% of the time, which is consistent with the findings of Hendershott and Madhavan (2015) from
an earlier period. We go beyond this earlier work by following customers after a failed inquiry:
by combining data from MKTX and TRACE, we can observe when customers make additional
electronic inquiries on MKTX for the same trade (successfully or not); when they complete the trade
outside of the electronic platform (via voice channels); and when they alter their trading strategy
(by attempting to trade a different quantity or a different bond) or abandon the trade altogether.

Second, exploiting the granularity of the data through the lens of a structural model, we use
maximum likelihood to derive novel estimates of time-to-trade in the corporate bond market. Our
estimates reveal the observable characteristics that affect time-to-trade, including the trade direction
(buy or sell), the trade size, the type of bond, and the characteristics of the customer making the
inquiry. For a fairly liquid trade—namely, an odd-lot purchase of an investment-grade bond by
a customer who is “well connected” to dealers—we find that it takes approximately two days to
complete a purchase after an initial inquiry fails. Block trades (with size above $5 million) take
about one day longer than micro-size trades (with size below $100,000), while bonds with amounts
outstanding below the median take half a day more to trade. We find that trade is about twice as
fast when customers want to sell, relative to when they want to buy. Moreover, we find significant
heterogeneity across customers as they attempt to trade. In particular, customers vary widely
in the number and quality of replies they receive in response to an inquiry, which we call their
“connectedness,” and this has a significant impact on their time to trade: it takes nearly twice as
long for customers in the bottom 70% of our connectedness measure to trade, relative to those
customers in the top decile. Comparing time to trade on MKTX against traditional voice-based
methods, we observe that orders trade faster on MKTX for all size categories except block trades,
suggesting customers use the platform for execution quality rather than price discovery.

The probability that an initial inquiry fails also varies systematically across observable attributes
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of the request: for example, the failure rate is approximately 14% for inquiries made by the most
connected customers to complete the fairly liquid purchase request described above, and rises to
more than 50% for the least connected customers attempting to execute more difficult trades. Hence,
the expected time to trade from the moment an initial inquiry is placed ranges from as little as a
few hours to several days. Of course, this represents a lower bound on the total time-to-trade, since
we do not have information about how long the customer was searching prior to submitting their
first inquiry on MKTX.1

Our estimates of time-to-trade are helpful for at least two reasons. First, they can be directly
applied to quantitative analyses based on search-theoretic models, since the arrival rates we estimate
are crucial, yet controversial inputs that are typically identified via indirect inference. Second, the
correlations we find between our estimates of time to trade and other observables provide a natural
starting point for additional empirical and theoretical work. For example, our findings suggest that
heterogeneity in customers’ ability to elicit offers from dealers is crucial for understanding OTC
market outcomes. As a second example, our finding that it takes longer for customers to buy a
bond than it does to sell it suggests that it might be important to understand frictions in the process
of dealers actually finding (or “sourcing”) a bond before selling it to a customer. Alternatively,
this finding could be indicative that customer-sellers are more distressed than customer-buyers, on
average. Distinguishing between these two explanations, and incorporating the subsequent findings
into existing theoretical frameworks, is crucial for understanding, e.g., the effects of various shocks
or policy proposals on prices and allocations in OTC markets.

In the third step of our analysis, we dig deeper into the behavior of customers and dealers over
the course of the search process in order to shed light on the underlying economic mechanisms that
generate trading delays in OTC markets. After all, the existence of an electronic trading platform
enables customers to reach a wide set of dealers with a click of the button. If one were take a
narrow, literal view of trading frictions, they might anticipate that an electronic trading platform
would make the US corporate bond market operate much like a frictionless exchange. Yet we find
that it does not: inquiries regularly fail to generate trade; both the number and quality of offers
vary significantly across customers and, for a given customer, over the course of their search; and,
ultimately, a trade often takes a nontrivial amount of time to execute. These observations raise

1For example, the customer could have searched for this trade on voice before the initial MKTX inquiry, or could
have been consulting dealer “runs” to determine when it would be worthwhile to make an inquiry. See Hendershott,
Li, Livdan, Schürhoff, and Venkataraman (2021) for a more detailed description of the dissemination of dealer runs.
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a number of key questions. Why are customers rejecting dealers’ offers and sending an identical
inquiry hours (or days) later? Why do some dealers reply to one inquiry and not the other? Why
do some dealers change their offer from one inquiry to the next?

We find that, not surprisingly, an important motivation for repeated inquiries is to find a better
quote. As in the classic model of McCall (1970), both the number and the quality of dealers’
replies vary over time, so that customers who reject an offer and continue to search typically trade
at a better price. Among those customers who eventually trade, we estimate that an additional
inquiry results in an average spread improvement of approximately 3 bps, which is about 18% of
the average spread in our sample. Next, we find that a key reason for variation in the number and
quality of quotes appears to derive from fluctuations in dealers’ inventory holdings. In particular,
we document that dealers are more likely to reply to a customer’s request to purchase a bond—and
more likely to offer a better ask price—when the dealer sector as a whole is holding a relatively
large quantity of the bond in inventory.2

We also document a relationship between the number of inquiries a customer has made and
the number and quality of dealers’ replies—a form of duration dependence that could potentially
be explained by dealers learning over time (e.g., the so-called “ringing phone curse”). However,
we find that this relationship more likely reflects unobserved heterogeneity across the orders being
requested. Specifically, we analyze the number and quality of dealers’ replies by adding fixed
effects for each sequence of repeated inquiries by the same customer for the same bond. This
allows us to control for both observed and unobserved heterogeneity during the course of the search
process. We find that outcomes become much more stable, suggesting that the effects of dealers
learning over the course of a search are either minimal or offset by other forces in this setting.

Related literature

Our work is most closely related to the few other papers that have used the proprietary data from
MKTX to analyze the impact of electronic trading on corporate bond market conditions (e.g.,
Hendershott and Madhavan, 2015; O’Hara and Zhou, 2021; Hendershott, Livdan, and Schürhoff,
2021). Our analysis differs from these papers in both our focus and our approach. To start, rather
than treating each inquiry as an independent observation, we organize the data into clusters of
inquiries that are made within a short time period by the same customer to buy/sell the same bond;

2Our findings are symmetric for customer requests to sell: fewer dealers reply, and the quality of their bid offers
are worse, when inventory holdings are relatively high.
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this allows us to document a number of new insights about the sequential nature of customers’
search process. Second, with the aid of a structural model, we use maximum likelihood to derive
novel estimates of time-to-trade conditional on the characteristics of the trade and the customer.
Lastly, we exploit a number of unique features of the data to explore the underlying sources of
trading delays, which have yet to be explored in the existing literature.

Our work also contributes to the vast empirical literature that studies corporate bond market
liquidity based on transaction data. Some prominent examples include Schultz (2001), Bessem-
binder, Maxwell, and Venkataraman (2006), Edwards, Harris, and Piwowar (2007), Goldstein,
Hotchkiss, and Sirri (2007), Bao, Pan, and Wang (2011), Bessembinder, Jacobsen, Maxwell, and
Venkataraman (2018), and many others.3 Our main contribution relative to this literature is to
document what happens before a trade occurs, i.e., to unpack the search process of customers in
the US corporate bond market and shed light on the frictions that prevent immediate trade. To
the best of our knowledge, our paper is among the first to derive direct empirical estimates of
time to trade—a key dimension of liquidity in the corporate bond market, and a crucial input into
search-theoretic models of OTC markets. Hendershott, Li, Livdan, and Schürhoff (2020) pursue
similar goals but for a different dimension of liquidity (the cost of trade failures) in a different
market (the market for collateralized loan obligations).

Our attempt to measure time-to-trade is related to earlier work in the OTC literature. In
particular, since existing data provides detailed information about dealers’ transactions, several
authors have used the restrictions of search models to identify dealers’ time-to-trade. For example,
according to the models of Afonso and Lagos (2015), Üslü (2019), and Brancaccio and Kang
(2021)—in which search is random and the distribution over agents’ state is continuous—every
meeting results in a trade, allowing them to identify time-to-trade from the observed frequency
of dealers’ transactions. While this identification strategy may be reasonable for dealers, it is
problematic for customers who presumably spend long periods of time out of the market: clearly,
observing that a customer trades once a year does not imply that it takes a year to find a counterparty.
Hugonnier, Lester, and Weill (2020) also use a structural model, along with data on asset turnover
and the length of intermediation chains, to identify dealers’ time-to-trade (with other dealers
and with customers separately); however, this approach does not allow for the identification of
customers’ time-to-trade. Gavazza (2016) is able to measure customers’ time-to-trade in a structural
model by taking advantage of aggregate information about the total number of real assets (in his

3See Bessembinder, Spatt, and Venkataraman (2020) for a survey.
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case, aircraft) for sale at a time. Such information is typically not available in OTC market data.
More recently, Pintér and Üslü (2021) offer an indirect measurement of customers’ time-to-trade
based on joint observations of trade size and frequency.4 Our contribution is to propose a more
direct approach, based on granular observations, which does not rely on the restrictions imposed
by a specific structural model.

Finally, our approach is related to the large literature that attempts to estimate the key objects of
interest in the standard sequential search model of McCall (1970), which was first used in financial
economics by Garbade and Silber (1976). Early attempts to do so in a labor market context include
Kiefer and Neumann (1979) and Flinn and Heckman (1982), among others. As in labor economics,
this simple partial equilibrium model is a natural starting point for interpreting micro data, as it helps
rationalize failed inquiries, repeated attempts to trade, and price dispersion. However, while we
find it useful to formulate a search-theoretic model to motivate our empirical exercise and interpret
its findings, it is important to note that our measurement does not impose theoretical restrictions
from the model. In this way, our findings are related to the seminal work of Lo, MacKinlay, and
Zhang (2002), which also relies on survival analysis to measure time-to-trade in a central limit
order book.5 Our analysis differs along several dimensions due to different trading mechanisms
and data structures. In addition, the magnitudes are vastly different: their findings from equities
three decades ago are in the order of minutes, whereas our findings from the current corporate bond
market are measured in hours and days.

The remainder of the paper has three parts. Section 2 describes the data. Section 3 provides
theory and evidence about time to trade. Finally, Section 4 empirically analyzes some likely sources
of trading delays.

2 Data

Our main source of data is MarketAxess (MKTX), the leading electronic trading platform in the
corporate bond market. Prior to the introduction of MKTX in 2000, the corporate bond market
operated almost exclusively under a “voice-based” trading system, whereby customers would
sequentially contact dealers (via telephone or chat) one at a time to solicit a quote. Stepping into

4Pagnotta and Philippon (2018) offer a more detailed discussion of trading speeds across various markets and
trading mechanisms.

5Deville and Riva (2007) also apply survival analysis in a different context to measure the time it takes for arbitrage
opportunities to close in option markets.
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this market, MKTX offered a trading platform allowing buy-side traders (henceforth customers)
to query multiple dealers at once via an electronic request for quote (RFQ), thus reducing the
time-consuming process of gathering quotes and potentially increasing competition across dealers.

As of the third quarter of 2022, MKTX accounted for approximately 21% of total trading
volume in the corporate bond market.6 However, as Table 1 reports, the market share of MKTX,
calculated as the ratio of trading volume executed on MKTX to the total trading volume observed in
TRACE, varies significantly across trade size and bond rating categories. In particular, consistent
with earlier findings by O’Hara and Zhou (2021), customers tend to use MKTX more intensely for
smaller trades and for investment-grade (IG) bonds. Indeed, as one can see in column (2), more
than half (54%) of the volume for odd lot trades (with size between $100,000 and $1 million) of
IG bonds is executed through MKTX.

When requesting a quote on the MKTX platform, customers specify the bond they wish to
trade, the desired quantity, the trade direction or “side” (buy or sell), and the duration of the auction
(usually between 5 and 20 minutes). Once submitted, an inquiry is sent to a customer’s list of
pre-authorized dealers.7 On the receiving end, dealers observe the details of the inquiry, including
the customer’s identity. The receiving dealers may respond to the inquiry with a quote, but are not
obligated to do so. At the end of the auction, customers observe the terms of the replies (if any),
and can choose to either accept one (and only one) of the offers or reject them all.8

Our sample from MKTX covers all trading activity from January 3, 2017 to March 31, 2021.
The data contain detailed information on customer inquiries, dealer responses, and customer
trading decisions. More specifically, for each inquiry, we observe the submission time (stamped
at the second), an anonymized customer identifier, the CUSIP (Committee on Uniform Securities
Identification Procedures) number of the bond, the quantity requested, the trade side (buy or sell),
the number of dealers who received the request, and several other attributes. For every response to
an inquiry, we observe the anonymized identifier of the responding dealer together with their quote.
For inquiries that result in a transaction, we observe the time at which trade occurs and the terms

6Source: MarketAxess quarterly report for 2022Q4, available from: https://investor.marketaxess.com.
7Starting in 2012, MKTX initiated Open Trading, an all-to-all trading option that allows other investors, including

other customers and non-pre-authorized dealers, to respond to customer RFQs. However, as Hendershott, Livdan, and
Schürhoff (2021) report, the vast majority of trades are still intermediated by a dealer.

8The main variation in dealers’ offers is price. In principle, dealers can respond to an offer with a different quantity,
but in practice more than 97% of dealer responses are at the quantity level requested by the customer.
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of trade. Note that we observe all inquiries, including those that do not result in a trade, either
because the inquiry receives no responses or because the customer rejects all responses.

Importantly, when an inquiry fails to trade on MKTX, a customer may trade outside the
platform, either via bilateral trades with dealers, or via other electronic platforms such as Tradeweb
or Bloomberg. In what follows, we will for simplicity refer to the trades occurring outside of MKTX
as “voice trade.”9 As we describe in greater detail below, we attempt to identify these trades using
the enhanced version of the TRACE data set provided by FINRA, which contains detailed reports
of every successful trade, whether it has an electronic or voice origin. When working with TRACE,
we filter the data following the standard procedure laid out in Dick-Nielsen (2014), and merge the
cleaned data with the Mergent Fixed Income Securities Database (FISD) to obtain bond fundamental
(e.g., credit rating, amount outstanding, coupon rate, and so on). Following the bulk of the academic
literature, we exclude variable-coupon, convertible, exchangeable, and puttable bonds, as well as
asset-backed securities, privately placed instruments, and foreign securities, both in the TRACE
and MKTX data. We also exclude primary market transactions.

Finally, we measure trade execution costs as a markdown or markup relative to a mid-point price
that we calculate using benchmark bid and ask prices provided by MKTX. In particular, MKTX
uses a proprietary algorithmic pricing engine for corporate bonds called Composite+ (or “CP+”),
which outputs reference bid and ask prices at a high frequency (every 15 to 60 seconds).10 These
forecasts can be used to benchmark a significant fraction of TRACE records: 95% (90%) of TRACE
records for investment-grade (high-yield) bonds can be matched to a standing CP+ forecast.

9The trades we refer to as “voice” are much more likely to be bilateral trades with dealers than electronic trades.
For a back-of-the-envelope calculation, we note that, according to Coalition Greenwich, by the end of 2022, electronic
trades had market share about 40% in IG (and 33% in HY). Recall that MKTX market share is 20% in IG (16% in
HY). This implies that 75% (= (100 − 40)/(100 − 20)) of IG and 80% (= (100 − 33)/(100 − 16)) of HY trades that
we refer to as “voice trade” are bilateral trades with dealers.

10The construction of the forecasts follows two steps. First, MKTX trains a machine learning (ML) algorithm using
three distinct sources of bond trading data: (1) historical TRACE prints; (2) indicative bond price data streamed by
dealers; and (3) request for quote responses sent by liquidity providers on the MKTX trading platform. Beyond trading
data, MKTX uses bond level information and other broad market data, such as CDX levels, to train the prediction
engine. The engine is recalibrated overnight at a daily frequency. Second, the calibrated engine is used over the
next trading day to generate real-time reference bid and ask prices of individual bonds using all available intraday
information. For more details about CP+, see https://www.marketaxess.com/price/composite-plus.
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2.1 The query process: parent and child orders

To give the reader a sense of how the query process works—and to motivate the way we organize
and analyze the data—we first provide a few (representative) examples of inquiries. To start, panel
(a) of Table 2 provides an example of a successful inquiry. In this example, a customer submitted an
inquiry to buy $300,000 in par value of an investment-grade bond issued by Bank of America. The
customer received six replies from dealers, whose anonymized identifiers are provided in column
(6). Note that, because the bond in question is investment-grade, dealer responses in column (7)
are expressed in terms of yield spread relative to a benchmark Treasury bond, so that a higher yield
spread implies a lower purchasing price. As we can see from this column, dealers’ quoted yield
spreads vary between 126.37 and 129.70 basis points. In the second row of column (9), the entry
“Done” shows that the customer accepted the best (highest) offer.11

Panel (b) of Table 2 provides an example of an unsuccessful inquiry. This inquiry was submitted
by the same customer and for the same bond as the inquiry reported in panel (a), but two days
later. This time, the customer requested to purchase $490,000 in par value instead of $300,000.
Nine dealers responded to the customer’s new request. By comparing the identifiers of responding
dealers for both inquiries, we see that five of the six dealers who responded to the first inquiry also
responded to the second inquiry. Four additional dealers, who had not replied to the first inquiry,
replied to the second inquiry. However, the customer decided to pass on the best offer (a yield
spread of 127.01 bps), as indicated by the “did not trade” (DNT) flag in the last column.

While customer inquiries are informative about the trading process in and of themselves, a
careful examination of the data reveals that individual inquiries are often part of larger trading
orders. As a result, individual inquiries should not always be treated as independent observations.
To help the reader see why, Table 3 reports all the inquiries that the customer in our previous
examples submitted to purchase this particular Bank of America bond over a six month period.
To save space, we do not report the responses that each inquiry received, and report only whether
or not a given inquiry resulted in a trade (see column 7). Note that the first and second inquiries
reported in Table 3 correspond to the inquiries reported in panel (a) and panel (b) of Table 2.

Notice immediately that the customer made repeated successful purchase inquiries for the same
bond over an eight day period. Of the six inquiries, four were successful and led to the purchase of

11In the last row of column (9) in Table 2, the entry “Cover” identifies the second best offer. MKTX informs dealers
who submit the second best offer of the rank of their quote. Dealers who submit lower-ranked offers do not learn their
relative position in the auction.
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300, 490, 290, and 680 bonds (with $1,000 par value) for a total of 1,760 bonds. This anecdotal
evidence suggests that customers sometimes execute large orders by submitting a sequence of
smaller inquiries, i.e., they split their trades. The second noteworthy feature of Table 3 is that the
customer twice followed an unsuccessful inquiry by resubmitting an identical inquiry (same bond,
quantity, and trade side) soon afterward; this phenomenon is observed after both the second and
fourth inquiries. While both of these unsuccessful inquiries received multiple dealer responses, the
customer chose to pass. Hence, the example in Table 3 suggests that even when customers are able
to simultaneously contact a large number of dealers, they may choose to turn down the offers they
receive and query the market again at a later time.

As we discuss in detail below, splitting a larger order into smaller inquiries is a regular features of
the data. Hence, we argue that a natural first step is to organize inquiries into clusters, representing
the total quantity of a particular bond that a customer is attempting to trade, which we call “parent”
orders. Within each parent order, we further partition the set of inquiries into sets of “child” orders
in which the customer requests a specific quantity of the bond.12 In the example above, as one can
see in columns (8) and (9) of Table 3, all six inquiries make up a single parent order—where the
customer attempts to trade 1,760 units of this particular bond over an eight day period—and this
parent order is split into four smaller child orders.

Since the data itself does not explicitly identify parent and child orders, we use the following
classification procedure. First, to construct parent orders, we group all inquiries made by a specific
customer for a given bond and trade side until we do not observe a new inquiry with the same
characteristics (customer, bond, trade side) for 𝑁𝑝 days since the last inquiry. The time cutoff 𝑁𝑝

is admittedly arbitrary; we set 𝑁𝑝 = 5 days in our main specification but we obtain qualitatively
similar results with other cutoffs (e.g., 𝑁𝑝 = 10).

Second, we construct child orders by looking at repeated inquiries from a given customer for
the same bond, the same trade side, and the same requested quantity. We consider all inquiries
with these characteristics as part of the same child order until either (i) the most recent inquiry
of the child order led to an electronic trade on MKTX; (ii) the customer submitted a new inquiry
requesting a different quantity, in which case we initiate a new child order with the updated quantity;
or (iii) there is no new inquiry with the same characteristics (same customer, bond, trade side, and
trade size) for more than 𝑁𝑐 days, where 𝑁𝑐 ≤ 𝑁𝑝. When no new inquiry has been submitted for

12We borrow the parent and child order terminology from the equity market literature on institutional trading where
large (parent) orders are often split into smaller (child) orders for execution.

10



more than 𝑁𝑐 days, we consider the execution of the child order unsuccessful on MKTX. Here
again, the threshold 𝑁𝑐 is arbitrary. While we use a cutoff of five days in our main specification,
our main results are not sensitive to this choice.

There are two reasons why a child order may be unsuccessful on MKTX. First, the customer
may alter their inquiry (by changing the requested trade size) or give up on the trade entirely.
Second, the customer might trade the bond via voice. These two outcomes have different economic
implications and should be distinguished. Ideally, we would match customer inquiries on MKTX
that result in a voice trade using the corresponding TRACE record. However, since TRACE does
not report customer identities, it is impossible to match a child order that is traded via voice to
its corresponding TRACE record with certainty. Fortunately, this issue can partially be overcome
since most corporate bonds trade only a few times a day or less. As a result, the likelihood that two
different customers would trade the same quantity of the same bond in the same direction within a
few days is arguably low. We thus infer the occurrence of a voice trade by verifying if there exists a
record in TRACE with the same characteristics as the unsuccessful child order (same bond, traded
quantity, trade side) within five days of that child order’s last inquiry on MKTX. In the rare cases
where there are multiple matches, we select the closest one in time.

2.2 Summary statistics

Parent and child orders with multiple attempts to trade, such as those described in Table 3, are fairly
common in our sample. Panel (a) of Table 4 reports that multiple trading attempts are observed
in 26% of parent orders and account for 43% of trading volume. A parent order is considered to
have multiple attempts to trade if it is composed of a child order with multiple trading attempts,
or if it is composed of multiple child orders. At the child order level, panel (b) of Table 4 reports
that multiple trading attempts are observed in 13% of child orders and account for 14% of trading
volume. A child order is considered to have multiple attempts to trade if it is composed of two or
more inquiries on MKTX, or if it has a single failed inquiry on MKTX followed by a voice trade.13

We could, in principle, conduct our analysis at the level of either parent or child orders. However,
the splitting of a parent order could be driven by a variety of frictions beside search, including

13Our definition of child order is quite restrictive since we require that inquiries have the exact same requested
quantity to be considered part of the same child order. Loosening this definition to allow some tolerance (e.g., that a
follow-up inquiry is within 10% of the quantity requested in the initial inquiry) increases the number of multi-attempt
inquiries. As a result, the numbers reported in Table 4 should be understood as conservative estimates of the prevalence
of child orders with multiple attempts to trade.
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the mitigation of “information leakage” (as in, e.g., Kyle, 1985). For this reason, we study the
sequential search process using child orders as our main unit of observation. Intuitively, focusing
on child orders is tantamount to studying the search process for a marginal unit of asset. Another
advantage of conducting our analysis at the child order level is that we can use trade quantity to
identify those child orders that are eventually traded by voice. If we were to use parent orders
instead, we would have to rely on a less stringent criterion, which would introduce measurement
errors. Given this choice, our estimates of the time required to trade each child order are a natural
lower bound on the time required to trade the full amount a customer wishes to transact.

The child order sequence of events. By construction, the first event that we observe in any child
order is an inquiry on MKTX, which either results in a trade or fails. If the initial inquiry fails, and
for every failed inquiry thereafter, the next element of the child order is one of four possible events.
First, the customer may make another inquiry on MKTX that fails to produce a trade. Second,
the customer may make another inquiry on MKTX that results in a trade with one of the dealers
that responded. Third, we may find that the customer traded the desired bond-quantity pair outside
of the MKTX platform, via voice trade, within a short period of time. Fourth, the customer may
give up on this specific trade and “exit,” either by sending an inquiry for a different amount or by
abandoning the trade altogether. Figure 1 illustrates a child order event tree. Note that we can
measure the time elapsed between any two events in this tree, unless it is an exit.

Summary statistics at the child order level. Our focus on child order sets us apart from previous
studies, such as Hendershott and Madhavan (2015) or O’Hara and Zhou (2021), who consider
the universe of all inquiries and/or trades on MKTX. A simple way to illustrate the conceptual
difference between child orders and inquiries is to calculate trade probabilities. Column (1) in
Table 5 reports the probability that an inquiry successfully results in trade, whereas column (2)
reports the probability that a child order successfully results in trade. Recall that a child order
can be successful either at the first inquiry or later in the search process (on MKTX or via voice);
columns (3) and (4) report the probability of these two outcomes. The first row of Table 5 reports
these statistics in the full sample, and the ensuing rows report the corresponding probabilities for
different sub-samples of the data to illustrate the determinants of successful RFQs.

In the full sample, we find that approximately 70% of all inquiries result in a successful trade,
which is consistent with the findings of Hendershott and Madhavan (2015) from an earlier time
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event 1

MKTX inq.
w/o trade

event 2

MKTX inq.
w/o trade

event 3
...

· · · · · · · · · · · ·

MKTX inq.
w trade

voice
trade

exit

MKTX inq.
w trade

Figure 1. A child order event tree
A child order can be viewed as a sequence of events. Each element of the sequence is one of four possible events: a
MKTX inquiry without trade, a MKTX inquiry with trade, a voice trade and, if the child order ends without a trade, an
exit. By construction, the first event is always an inquiry on MKTX, either without or with trade.

period. As we discuss in more detail later in the text, approximately 10% of the failed inquiries
received no responses and the remaining 90% receive one or more replies. Note that, since child
orders can include repeated inquiries on MKTX or via voice, they are naturally associated with
larger trading probabilities than inquiries alone. The difference is economically significant: in the
full sample, approximately 84% of child orders are eventually fulfilled.

The probability of trade also differs systematically with the properties of the trade and the
customer. For example, customer requests to sell a bond are more likely to succeed than requests
to buy. Requests to trade bonds with higher ratings, more turnover, more amount outstanding, and
less time-to-maturity are also more likely to succeed. Micro size trades (less than $100,000) are
also more likely to be fulfilled relative to larger trades.

However, perhaps the most significant source of heterogeneity across trade requests derives
from differences across customers. To illustrate this fact, we create a measure of the requesting
customer’s “connectedness” to proxy for the number of existing relationships with dealers (or other
unobserved characteristics that influence the number and quality of replies a customer receives).
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To do so, we first regress the average number of dealer responses elicited by a particular customer,
controlling for the customer’s average inquiry size, the fraction of requests that were sell vs. buy,
and the fraction of requests that were for investment-grade vs. high-yield bonds. We then rank
customers into deciles based on residuals of this regression. One can see that the most connected
customers are much more likely to trade—both at the inquiry and the child order levels—relative
to their less connected counterparts.

In order to isolate the effects of specific trade or customer characteristics on trading probabilities,
we perform two logistic regressions. In the first regression, the dependent variable is whether trade
occurred on MKTX at the inquiry level, while in the second regression the dependent variable is
whether trade occurred on MKTX or voice at the child order level in column (2). The independent
variables are indicator functions for the customer and trade characteristics described above, along
with an indicator to distinguish between the “Covid period” of March 2020, when the corporate
bond market suffered a severe disruption, and “normal times” (outside of the Covid period).

We define our “baseline” as a fairly liquid request: an odd lot, investment-grade, buy request
from a customer in the top decile of our connectedness measure, requested during normal times (i.e.,
not Covid), when the bond being requested had above-median turnover and amount outstanding
and below-median time to maturity. The results are in Table IA.1 and summarized in Figure 2,
which shows the implied trading probabilities from the regression as we vary different attributes
of our baseline request. The blue bars represent inquiry-level trade probabilities (on MKTX) and
the combined blue and gray bars represent child-order trade probabilities (on MKTX or voice).14
The figure highlights, again, the important distinction between inquiries and child orders. It also
reinforces the message that the “least connected” customers, defined as those in the bottom seven
deciles of our connectedness measure, trade with significantly lower probability than those who are
better connected.15 However, these customers frequently continue to search after a failed inquiry,
as reflected by the difference between the probability of success at the inquiry level (about 48%,)
and the child order level (about 74%).

Finally, Figure 2 also highlights that the probability of trade fell at both inquiry and child order

14Keeping in mind that the unit of the coefficients is the log odds ratio of trade, the intercept in column (1) shows
that the odds ratio of trade for the baseline category is 2.231, so that the probability that an inquiry in our baseline
category is successfully completed is 𝑒2.231/(1 + 𝑒2.231) = 90% as shown in the second blue bar in the Figures.

15The empirical relevance of connections in OTC market has been studied before. For example, Afonso, Kovner,
and Schoar (2014) show that connections impact terms of trade in the Federal Funds Market during stressful times.
In the UK government bond market, Kondor and Pintér (2022) proxy for the arrival of private information using time
variation in the number of connections, measured as the number of dealers a given client trade in a given day.
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Figure 2. Estimated trade probability on MKTX at inquiry and child order levels
This figure compares the estimated trade probability using logit regression estimates from Table IA.1. The blue bars
present trade probabilities (on MKTX) at the inquiry level. The gray bars shows the extra trade probability (on MKTX
or voice) for a child order, taking into account the option to make repeated inquiries and trade on voice. The top
panel shows trade probabilities for different size categories. The bottom panel presents trade probabilities for non-size
categories. Indicators for size and non-size categories are defined in Tables 5 and 8. The baseline category is an
odd-lot purchase of an investment-grade bond, with high turnover, low time-to-maturity, and high amount outstanding,
during normal times, for a connected investor.

levels during the COVID-19 crisis in March 2020, but that the fall was much less dramatic at the
child order level: at the inquiry level, the trade probability falls to about 79%, but at the child
order level it falls much less, to 92%. This suggests that sequential search becomes more prevalent
during stressful events: it is harder for customers to obtain good quotes on MKTX, but they can
compensate by waiting.
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One may wonder whether our sample significantly differs from its inquiry- or trade-level
counterparts in other dimensions as well.16 Table IA.2 in the Internet Appendix shows that this
is not the case: child-order and inquiry-level summary statistics are broadly the same for trade
direction and size and bond characteristics. As in previous studies, we find that trade sizes on
MKTX are smaller and bond credit risk is lower than in the market at large. To measure the
inter-arrival time of trading opportunities, we will need to restrict the sample further to child orders
with at least one failed inquiry. Column (3) of Table IA.2 shows that the summary statistics remain
similar, though the sample is now more selected towards high-yield bonds and inquiries of larger
size since both are less likely to trade at the first MKTX inquiry.

Table 6 offers additional information about what happens after each failed inquiry on MKTX.
For example, the second row shows that if the first inquiry fails, the probability that the following
event is a failed inquiry on MKTX is 0.16, the probability that there is a successful inquiry on
MKTX is 0.09, the probability that there is a voice trade is 0.26, and the probability that the
customer adjusts or abandons the order is 0.48. We will argue later that these probabilities are not
straightforward to interpret because of competing risk and selection biases. Notwithstanding these
issues, there are a few takeaways from Table 6.

First, a customer’s search for a counterparty is often sequential: the probability of failing an
inquiry is nontrivial and, conditional on failure, customers often submit repeat inquiries. Second,
a customer’s search is also nonexclusive: if the first inquiry fails, the child order may eventually
trade on MKTX or voice.17 The third takeaway is that, after a failed inquiry, a customer is fairly
likely to end a child order, either by altering the parameters of the inquiry or abandoning the trade
altogether. Fourth, the summary statistics in Table 6 show that the frequency distribution over the
four events depends on the number of failed inquiries—a form of duration dependence.

Finally, table IA.3 in the Internet Appendix presents inter-arrival times between events in child
orders. For example, after one failed inquiry, the average time to the next traded inquiry on MKTX
is 0.65 business days (the clock we use to measure business days only runs when the market is
open, accounting for the fact that the market is closed at night and during weekends and holidays).

16For example, suppose that high-yield bonds trade after twice as many inquiries as investment-grade bonds. Then
we would find that the number of high-yield inquiries is twice that of high-yield child orders.

17While the probability of a voice trade is larger than that of an MKTX trade, the ratio is not as large as the relative
volume of voice to MKTX volume. This suggests that, although trade is nonexclusive, the customers in our sample are
using MKTX more intensely than the general population.
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However, as we argue below, this estimate is clearly biased downwards, since observing this event
requires that none of the other events occur first.

3 Measuring Time to Trade: Theory and Evidence

In this section, we first formulate and solve a sequential search model of a child order in the style
of McCall (1970), which was first applied to financial markets by Garbade and Silber (1976). This
theoretical detour serves two purposes. First, it clarifies several important issues that arise when
interpreting the data; in particular, our derivations below elucidate two sources of bias in estimating
time to trade—competing risk and selection—and hence motivate the statistical model we estimate
later. Second, it illustrates how our empirical estimates shed new light on search-based models
of OTC markets: our analysis offers guidance for the quantitative values of key parameters and
highlights which dimensions of the model fit the data well, and which

Second, we formulate a statistical framework inspired by the the structure of the sequential
search model and use maximum likelihood to estimate the time it takes for customers to contact
and trade with dealers (via MKTX and via voice). This allows us to lay out, for the first time, a
set of stylized facts regarding time-to-trade based on direct observations. Note that, at this stage,
we remain agnostic about why it takes time to trade; we return to this question later, in Section 4,
where we offer some empirical evidence about the sources of trading delays.

3.1 A McCall (1970) model of a child order

Time is indexed by 𝑡 ∈ [0,∞). We consider a child order to sell one unit of a perpetual par
bond, i.e., a perpetuity with a coupon rate equal to the interest rate, 𝑟 (the analysis of a purchase
is symmetric). We assume that the seller is risk-neutral with discount rate 𝑟 and values the bond
below its par value of 1. Specifically, when she holds the bond, she derives a flow utility 𝑟 − 𝑐 for
some distress cost 𝑐 > 0. The seller recovers from distress with intensity 𝛾. Upon recovering, we
assume that the seller’s continuation value reverts to the par value of the bond, she stops searching,
and exits the market. In the data, the seller may exit for a variety of other reasons. For instance,
this could happen if she updates the quantity requested or makes an inquiry for a different bond.
This can be captured by assuming that the continuation value of exiting is different from the par
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value of the bond. As shown in Appendix A.2, while some details of the analysis change, the main
results are upheld.

Consistent with the child order tree of Figure 1, we take 𝑡 = 0 to represent the time at which
the seller makes her first inquiry on the electronic market. If the first inquiry is unsuccessful, the
seller makes inquiries on the electronic or the voice market with Poisson intensities 𝜆𝑒 and 𝜆𝑣,
respectively. After an inquiry in the electronic market, the seller receives 𝑗 ∈ {0, 1, 2, . . .} offers
with probability 𝑞 𝑗 . We represent an offer as a bid 1 − 𝑚, where 𝑚 is the markdown over the bond
par value of 1. We assume further that each offered markdown is drawn independently according to
the cumulative distribution function (CDF) 𝐺𝑒 (𝑚). Correspondingly, when she makes an inquiry
in the voice market, the seller receives just one offer, drawn according to the CDF 𝐺𝑣 (𝑚). For
simplicity we assume that, for both distributions, the lower bound of the support is 0. As will be
clear below, the optimal trading strategy of the seller depends on two sufficient statistics. First the
total Poisson intensity of inquiries, 𝜆 = 𝜆𝑒 + 𝜆𝑣, and, second, the CDF over the lowest markdown
conditional on an inquiry,

𝐹 (𝑚) = 𝜆𝑒

𝜆𝑒 + 𝜆𝑣

∞∑︁
𝑗=0
𝑞 𝑗

[
1 − (1 − 𝐺𝑒 (𝑚)) 𝑗

]
+ 𝜆𝑣

𝜆𝑒 + 𝜆𝑣
𝐺𝑣 (𝑚).

The first term in this equation is the probability of making an inquiry on the electronic market,
multiplied by the probability that the smallest markdown among 𝑗 offers is less than 𝑚. The second
term has the same interpretation, but for the voice market.

Given this notation, the Hamilton Jacobi Bellman (HJB) equation for the seller’s value at any
time 𝑡 > 0 is

𝑟𝑉 = 𝑟 − 𝑐 + 𝜆
∫

max{1 − 𝑚 −𝑉, 0} 𝑑𝐹 (𝑚) + 𝛾(1 −𝑉).

The first term on the right-hand side, 𝑟−𝑐, is the flow value of holding the asset. The second term is
the option value of search: the seller makes an inquiry with intensity 𝜆, her best offer is distributed
according to 𝐹 (𝑚), and she accepts if the price 1−𝑚 is larger than the value of continuing search,𝑉 .
The third and last term is the expected flow utility if the seller recovers and exits. As is standard, the
HJB shows that the optimal trading strategy of the seller is entirely characterized by a reservation
markdown 𝑚★ ≡ 1−𝑉 , such that the seller trades if and only if the lowest markdown she receives is
less than 𝑚★. Substituting 𝑚★ = 1−𝑉 into the HJB and solving, we obtain our version of McCall’s
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celebrated equation,

𝑚★ =
𝑐

𝑟 + 𝛾 − 𝜆

𝑟 + 𝛾

∫ 𝑚★

0
𝐹 (𝑚) 𝑑𝑚. (1)

Appendix A.1 discusses the comparative static of 𝑚★ with respect to parameters. We use this
simple model as an aid to interpret our child order data. Recall the child order tree of Figure 1, where
a child order is viewed as a sequence of events. Our model implies a probability distribution over
this sequence. Namely, there is a new event in the child order tree with intensity 𝜆𝑒 +𝜆𝑣𝐺𝑣 (𝑚★) +𝛾.
Conditional on an arrival, the new event is drawn independently from the arrival time according to
the following distribution. The new event is an inquiry without trade on the electronic market with
probability

𝜋1 =
𝜆𝑒

∑∞
𝑗=0 𝑞 𝑗 (1 − 𝐺𝑒 (𝑚★)) 𝑗

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾
,

it is an inquiry with trade on the electronic market with probability

𝜋2 =
𝜆𝑒

∑∞
𝑗=0 𝑞 𝑗

[
1 − (1 − 𝐺𝑒 (𝑚★)) 𝑗

]
𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾

,

it is a trade on the voice market with probability

𝜋3 =
𝜆𝑣𝐺𝑣 (𝑚★)

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾
,

and it is an exit with probability 𝜋4 = 1 − 𝜋1 − 𝜋2 − 𝜋3. The formulae above illustrate two sources
of bias that make interpreting child order statistics difficult. We discuss these below.

Competing risk bias. First, since the event type is drawn independently from the event arrival
time, it follows that the observed expected arrival time of any of the four events is given by

𝜏 =
1

𝜆𝑒 + 𝜆𝑣𝐺𝑣 (𝑚★) + 𝛾
.

Notice that this observed expected arrival time is lower than the actual arrival time of the event.
For example, the actual arrival time of a voice trade is 1/(𝜆𝑣𝐺 (𝑚★)). This is a classical survivor
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bias or competing risk bias (e.g., Flinn and Heckman, 1982; Katz and Meyer, 1990; Honoré and
Lleras-Muney, 2006) created by the arrival of other events. Imagine for example, that sellers exit
the market very fast. Then the only trades on the voice market we would observe are those that
occur sufficiently quickly, before an exit.

The formulae above show that there is a simple way to correct for this survivor bias: one needs
to divide the observed arrival time by the probability of the corresponding event. For example,
the true expected time to trade on voice is equal to the ratio 𝜏/𝜋3. As we will show below, this
correction can be made more generally using a Maximum Likelihood approach, conditional on
observable child-order characteristics.

Selection bias. In the data, we can control for observable characteristics of child orders, such as
bond type, trade size, and measures of customer connectedness. But there are other characteristics
that are difficult to control for based on observables, including the distress cost of a seller, 𝑐; her
inquiry intensities, 𝜆𝑒 or 𝜆𝑣; her ability to elicit responses from dealers, {𝑞 𝑗 }; or her exit intensity,
𝛾. Such unobserved characteristics create classical selection issues that could explain the apparent
dependence of event probabilities on the number of failed inquiries, shown in Table 6.

To fix ideas formally, suppose that heterogeneity in child orders can be summarized by a one-
dimensional type variable 𝑥 ∈ [𝑥, 𝑥] which determines the structural variables 𝜆𝑒, 𝜆𝑣, 𝛾, 𝑐, 𝑟, 𝑞 𝑗 ,
𝐺𝑒, 𝐺𝑣, and so on. Then, as we establish in Appendix A.3, the measure of type-𝑥 child orders with
𝑛 ≥ 1 failed inquiries, 𝑑𝜇(𝑥 |𝑛), satisfies

𝑑𝜇(𝑥 | 𝑛) = 𝜋1(𝑥)𝑛 𝑑𝜇(𝑥 | 0), where 𝜋1(𝑥) ≡
𝜆𝑒 (𝑥)

(∑
𝑗 𝑞 𝑗

[
1 − 𝐺𝑒 (𝑚★(𝑥) | 𝑥)

] 𝑗 )
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

.

Hence, the measure of type-𝑥 child orders with 𝑛 failed inquiries declines geometrically with
𝑛 according to the coefficient, 𝜋1(𝑥), which is simply the probability that a type-𝑥 inquiry on the
electronic trading platform fails to trade (the left-most branch of event 2 in the child-order tree of
Figure 1). A consequence of this result is that, as the number of failed inquiries increases, the
sample of child orders becomes more selected towards those investors who fail inquiries on the
trading platform with higher probability. Hence, if 𝑥 is unobservable to the econometrician and
is monotonically related to 𝑥, any outcome variable which is also monotonically related to 𝑥 will
appear to be monotonically related to the number of failed inquiries.

As a concrete example, suppose child orders only differ in terms of the customers’ distress cost, 𝑐,
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but are otherwise identical. Then 𝜋1(𝑐) is decreasing in 𝑐 since more distressed sellers have a higher
reservation markdown, 𝑚★. As a result, as the number of failed inquiries increases, the sample gets
more and more selected towards less distressed customers. It follows that we should observe two
key outcome variables—the trading probability and the transaction markdown—decline with the
number of failed inquiries, 𝑛.

3.2 Evidence about time to trade

In this section, we propose a statistical framework to measure the time it takes customers to trade
after their first inquiry on MKTX, correcting for the competing risk bias discussed above, and
controlling for observable trade characteristics. Our unit of observation 𝑖 is an event node in the
child order tree of Figure 1—specifically, the type and time of the event that follows an unsuccessful
inquiry on MKTX. We index the 𝐾 = 4 possible events by 𝑘 ∈ {1, . . . , 𝐾}, where event 𝑘 = 1 is
an inquiry on MKTX without trade, 𝑘 = 2 is an inquiry on MKTX with trade, 𝑘 = 3 is a voice
trade, and 𝑘 = 4 is an event that ends the child order or “exit.” We assume further that these events
arrive at independent exponential times with intensity 𝜆(𝜃′

𝑘
𝑥𝑖) = exp(𝜃′

𝑘
𝑥𝑖), where 𝑥𝑖 is a vector of

covariates for that child order. These covariates include trade size, bond characteristics, customers’
characteristics, and the number of failed inquiries on MKTX; the latter is particularly important,
in that it allows us to identify potential duration dependence.

3.2.1 Maximum Likelihood Estimation

Given this framework, conditional on 𝑥𝑖, the event 𝑘 occurs at time 𝜏𝑖 = 𝑡 with probability density

P (𝜏𝑖 = 𝑡, 𝜔𝑖 = 𝑘 | 𝑥𝑖) = 𝜆(𝜃′𝑘𝑥𝑖)𝑒
−∑

ℓ 𝜆(𝜃′ℓ𝑥𝑖)𝑡 .

This formula is the product of the probability that event 𝑘 occurs at time 𝑡, 𝜆(𝜃′
𝑘
𝑥𝑖)𝑒−𝜆(𝜃

′
𝑘
𝑥𝑖)𝑡 , and

the probability that all other events, ℓ ≠ 𝑘 , occur after time 𝑡, 𝑒−
∑

ℓ≠𝑘 𝜆(𝜃′ℓ𝑥𝑖)𝑡 . This is the sense
in which there are competing risks: the probability density accounts for the fact that we observe
event 𝑘 only if the other events ℓ ≠ 𝑘 have not occurred before. Aggregating across events and the

21



number of inquiries, the likelihood function is, evidently:

𝑛∏
𝑖=1

(∑︁
𝑘

I{𝜔𝑖=𝑘}𝜆(𝜃′𝑘𝑥𝑖)𝑒
−∑

ℓ 𝜆(𝜃′ℓ𝑥𝑖)𝜏𝑖

)
.

Recall that we only observe whether an exit occurred, and not the time of an exit. Therefore,
integrating with respect to 𝜏𝑖 when 𝜔𝑖 = 𝐾 , we obtain the likelihood for our actual observations:

𝑛∏
𝑖=1

(∑︁
𝑘≠𝐾

I{𝜔𝑖=𝑘}𝜆(𝜃′𝑘𝑥𝑖)𝑒
−∑

ℓ 𝜆(𝜃′ℓ𝑥𝑖)𝜏𝑖 + I{𝜔𝑖=𝐾}
𝜆𝐾 (𝜃′𝐾𝑥𝑖)∑
ℓ 𝜆(𝜃′ℓ𝑥𝑖)

)
.

Taking logs and simplifying, we obtain that the log-likelihood is
∑
𝑖 𝐿 (𝜔𝑖, 𝜏𝑖, 𝑥𝑖, 𝜃), where:

𝐿𝑖 (𝜔𝑖, 𝜏𝑖, 𝑥𝑖, 𝜃) =
∑︁
𝑘

I{𝜔𝑖=𝑘}𝜃
′
𝑘𝑥𝑖 − I{𝜔𝑖≠𝐾}

(∑︁
ℓ

exp(𝜃′ℓ𝑥𝑖)
)
𝜏𝑖 − I{𝜔𝑖=𝐾} log

(∑︁
ℓ

exp(𝜃′ℓ𝑥𝑖)
)
.

We first gain some qualitative and quantitative intuition by deriving the unconditional Maximum
Likelihood Estimator (MLE), i.e., the special case in which the only control is a constant.

Lemma 1 Suppose the only control is a constant, that is, 𝑥𝑖 = 1 for all observations. Let 𝜋̂𝑘 denote
the empirical frequency of event 𝑘 and 𝜏 the empirical average inter-arrival time of an event 𝑘 ≠ 𝐾 .
Then, the MLE of 𝜃𝑘 is 𝜃𝑘 = log (𝜋̂𝑘/𝜏).

This is the same estimate that we intuitively derived in the previous section, when discussing
the competing risk bias. Indeed, after a failed inquiry, the expected arrival time of any event is
𝜏 = 1/(∑ℓ 𝜆ℓ), and the probability of event 𝑘 is 𝜋𝑘 = 𝜆𝑘/

∑
ℓ 𝜆ℓ. This shows that 𝜆𝑘 = 𝜋𝑘/𝜏 and

𝜃𝑘 = log(𝜆𝑘 ), which is the population counterpart of the estimator in Lemma 1.
The estimation results, shown in Table 7, offer some guidance about the orders of magnitude

of arrival times for different events. For example, the unconditional intensity of a voice trade is
𝑒−3.367 = 0.0345 per business hour, corresponding to an average time of 1/0.0345 = 28.99 business
hours, or about 3.3 business days (assuming 9 hours of trading per day). Importantly, the estimates
clearly show that competing risk creates a significant bias in calculating time to trade, as 3.22
business days is much larger than the observed average inter-arrival times shown in Table IA.3.
Similarly, after a failed inquiry, without controlling for trade and customer characteristics, the time
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to trade (on MKTX or voice) is 1/
(
𝑒−4.077 + 𝑒−3.367) = 19.43 business hours, or approximately 2.15

business days.
Next, we move to the conditional MLE, with controls for trade characteristics (coefficients

shown in Table 8) and for the number of failed inquiries in the child order to date (coefficients
shown in Table 9). All controls are dummies. The “baseline” category, defined above, is when all
indicator variables are zero: an odd-lot purchase of an investment-grade bond with low time-to-
maturity, high turnover, and high amount outstanding during normal times (i.e., not March 2020)
for a connected investor. There is no closed form solution for the estimators. However, since the
likelihood function is concave in the vector of coefficients 𝜃 = (𝜃𝑘 )1≤𝑘≤𝐾 , it can be maximized
reliably using existing optimization packages.

Table 8 shows how the intensities of each event, 𝜆(𝜃′
𝑘
𝑥), vary with trade characteristics.

The intensities for the baseline category are obtained by taking the exponential of the intercept.
The marginal effect of other trade characteristics is given by the exponential of their respective
coefficient. In particular, when the coefficient is sufficiently small, it approximates the marginal
effect in percentage term: e.g., from the fourth row in column (2) of Table 8, the intensity of trade
with MKTX for a bond rated Ca to C is approximately −(𝑒−0.284 − 1) ≃ 25% lower than for an
investment-grade bond.

The estimates in Table 8 demonstrate that intensities vary significantly with trade characteristics.
Consider, for example, trade size. We observe that the intensity of trade with MKTX for micro
size trades (with size < $100,000) is larger than for odd lot trades (our baseline category with size
between $100,000 and $1 million). The intensity for odd lots is larger than for round lots (with size
between $1 and $5 million), which is larger than for block trades (with size larger than $5 million).
Interestingly the intensity of voice trade is not monotonic in trade size: for example, block trades
trade faster on voice. Bonds with low turnover, and high-yield bonds, also have lower trading
intensity, both on MKTX and the voice market.

Like the trading probabilities reported earlier, sales and purchases are asymmetric: customers
trade faster when they sell, on average, than when they buy. As we discuss in greater detail below,
there are several possible reasons for this. For example, it could reflect underlying frictions in
locating or “sourcing” the bond, since dealers need to find the bond in order to sell it to a customer
but do not to buy it from a customer. Alternatively, it could reflect unobserved heterogeneity, if
customer-sellers are, on average, more desperate to trade than customer-buyers.

The last rows of Table 8 show that our measure of customer connectedness is associated with
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significant heterogeneity in trading intensity on MKTX. Our estimates also indicate that the effects
are non-monotonic, which can be consistent with theory. In particular, holding a customer’s
reservation markdown constant, an increase in connectivity implies that the customer will receive
more (or better) offers, so she is more likely to obtain one that falls below her reservation markdown
and trade. However, since she expects to receive more offers in the future, her reservation markdown
falls and reduces the probability of trading.

Finally, the fifth row of Table 8 reveals that the COVID-19 crisis (identified by inquiries
submitted in March 2020) had a significant negative impact on the trading intensity. This finding
confirms that market liquidity can deteriorate along multiple dimensions in times of stress. In this
sense, looking only at the large increases in spreads (documented by, e.g., O’Hara and Zhou, 2021;
Kargar, Lester, Lindsay, Liu, Weill, and Zúñiga, 2021, and others) underestimates the true affects
of sudden selling pressure on market quality.

Table 9 shows that, after controlling for trade characteristics, the number of failed inquiries
retains predictive power for the intensity of each event. Interestingly, the intensity of an inquiry on
MKTX that doesn’t result in trade increases with the number of failed inquiries, but the intensity
of successful inquiries—i.e., inquiries on either MKTX or via voice that result in trade—declines.
Viewed through the lens of the McCall (1970) model outlined in the previous section, this evidence
suggests a role for unobserved child order characteristics. For example, if some types of orders
tend to receive few replies, a customer may be forced to make many (frequent) inquiries, knowing
that each inquiry is unlikely to generate a good offer. Hence, the composition of child orders with
many inquiries could skew towards these types of orders.

3.2.2 Time to trade

We define time to trade as the expected time a customer takes to trade, either on MKTX or on
voice, if she is not subject to an exit shock. If the intensities did not depend on the number
of failed inquiries, calculating time to trade would be simple. For example, from the intercepts
in columns (2) and (3) in Table 8 or 9, the time to trade for our baseline category would be
1/(𝑒−3.49 + 𝑒−3.25) ≃ 14.43 business hours, or 1.6 business days. However, the dependence of
intensities on the number of failed inquiries requires us to modify this simple formula.

Formally, consider a child order after 𝑛 failed inquiries. With a slight abuse of notation, let 𝑥𝑛
denote the corresponding vector of covariates, where 𝑛 stands for the number of failed inquiries to
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date. Then, the expected time to trade satisfies the following recursive formula:

𝑇 (𝑥𝑛) = E [𝜏′ | 𝑥𝑛] + P [𝜔′ = 1 | 𝑥𝑛] × 𝑇 (𝑥𝑛+1) + P [𝜔′ = 2 | 𝑥𝑛] × 0

+ P [𝜔′ = 3 | 𝑥𝑛] × 0 + P [𝜔′ = 4 | 𝑥𝑛] × 𝑇 (𝑥𝑛).

The first term is the expected time to the next event. The other terms add up to the expected
continuation time to trade after the next event. Specifically, if the next event is an unsuccessful
inquiry on MKTX, 𝜔′ = 1, then there is one additional failed inquiry and the continuation time to
trade is 𝑇 (𝑥𝑛+1). If the next event is 𝜔′ = 2 or 𝜔′ = 3, then trade occurs so the continuation time to
trade is zero. The last line corrects the bias induced by the competing risk of exit: specifically, if
the next event is an exit (𝜔′ = 4), we assume that the investor continues to search for a trade instead
of exiting, so the continuation time to trade is 𝑇 (𝑥𝑛).

Using the exponential formula for expected inter-arrival time and event probability, we obtain

𝑇 (𝑥𝑛) =
1

𝜆(𝜃′1𝑥𝑛) + 𝜆(𝜃
′
2𝑥𝑛) + 𝜆(𝜃

′
3𝑥𝑛)

+
𝜆(𝜃′1𝑥𝑛)

𝜆(𝜃′1𝑥𝑛) + 𝜆(𝜃
′
2𝑥𝑛) + 𝜆(𝜃

′
3𝑥𝑛)

𝑇 (𝑥𝑛+1). (2)

We can use this formula to calculate the time to trade. Moreover, differentiating (2) with respect to
𝑥, we obtain a corresponding recursive formula for the gradient of time to trade, which allows us
to apply the Delta method and obtain standard errors for the time to trade estimates. We illustrate
our results in a sequence of figures, where we plot the expected time to trade, conditional on the
number of failed inquiries and specific trade characteristics using estimates from the MLE. We
represent the 95% confidence intervals by shaded areas surrounding the conditional expectation.

Figure 3 shows that, for our baseline category, the time to trade increases from about two trading
days after one failed inquiry to nearly four trading days after ten failed inquiries. High-yield bonds,
older bonds, and low turnover bonds have a longer time to trade, though the difference is small
relative to other covariates.

In Figure 4, we study the impact of trade size on time to trade. We observe that smaller trades
are faster on MKTX. For example, after one failed inquiry, it takes 1.5 days to trade a micro-size
bond, while the time it takes to trade a block-size inquiry is almost twice as long. This evidence
complements prior studies showing that electronic trading is concentrated on smaller trades (e.g.,
Hendershott and Madhavan, 2015; O’Hara and Zhou, 2021).

Figure 5 shows that less connected customers, classified as customers who receive fewer offers
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Figure 3. Estimated conditional time to trade from the MLE: observed trade characteristics
This figure plots the estimated time to trade from Equation (2), conditional on the number of failed inquiries and on
observed trade characteristics except trade size and customer connectedness categories. “Sell” takes the value of 1 for
a sale request, and zero otherwise; “COVID” takes the value of 1 if the RFQ is submitted in March 2020, and zero
otherwise; “old age” takes the value of 1 if the bond’s age is above the 75th percentile of the distribution, and zero
otherwise; “low turnover” takes the value of 1 if the bond’s quarterly turnover is below median, and zero otherwise;
“high TTM” takes the value of 1 if the bond’s time to maturity is above the sample median, and zero otherwise; “low
amt out” takes the value of 1 if the bond’s amount outstanding is below the sample median, and zero otherwise. The
baseline category is an odd-lot purchase of an investment-grade bond, with high turnover, during normal times, for a
connected investor, after one failed inquiry.

from dealers, trade much slower on MKTX. For example, in the baseline category, the most
connected customers (in the tenth decile of connectedness) trade after approximately 2.2 days
following two failed inquiries. For the least connected customers, in deciles 1 to 7, it takes almost
3 times longer to trade.

In Figure 6, we compare time to trade on MKTX to the one on voice for different trade size
categories. The first takeaway is that, except for block trades, child orders trade much faster on
MKTX than voice. This finding may be explained by the fact that customers initiate their first
inquiries on MKTX and prefer to trade on the electronic platform, possibly for its execution quality
rather than price discovery. Next, micro-size trades are faster than odd and round lots in both MKTX
and the voice market, but block trades are much slower on MKTX. Again, this is not surprising,
since, as mentioned above, smaller trades are more likely to be traded on electronic platforms.
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Figure 4. Estimated conditional time to trade from the MLE: impact of size
This figure plots the estimated time to trade from Equation (2), conditional on the number of failed inquiries and on
trade size categories, and controlling for other observed trade characteristics. “Micro size” takes the value of 1 if the
quantity of dealer response is below $100,000, and zero otherwise; “odd lot” takes the value of 1 if the quantity of
dealer response is between $100,000 and $1 million, and zero otherwise; “round lot” takes the value of 1 if the quantity
of dealer response is between $1 million and $5 million, and zero otherwise; “block trade” takes the value of 1 if the
quantity of dealer response exceeds $5 million, and zero otherwise. The baseline category is an odd-lot purchase of an
investment-grade bond, with high turnover, during normal times, for a connected investor, after one failed inquiry.

4 Sources of trading delays

The workhorse model of Duffie, Gârleanu, and Pedersen (2005) posits that trading in OTC markets
takes time because investors have to search for a dealer. Hence, if one takes this model literally,
a platform like MKTX should eliminate trading delays, as it allows investors to contact dealers
instantaneously. And yet, despite the ability to contact multiple dealers at the push of a button,
our results show that it can still take investors considerable time to trade in the OTC corporate
bond market. How can this be? How can something resembling “search” arise when there are
no physical barriers to contacting a counterparty? Our answer is that search models of OTC
markets should not be taken literally: the assumption that it takes time to find a suitable trade is not
meant to capture the time it takes to dial a telephone or push a button. Instead, as Stigler (1961),
Demsetz (1968), Pissarides (2000), and others have argued, these models are intended to capture
the idea that there are various types of frictions—including information, spatial, and coordination
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Figure 5. Estimated conditional time to trade from the MLE: impact of customer connectedness
This figure plots the estimated time to trade from Equation (2), conditional on the number of failed inquiries and on
customer connectedness categories, and controlling for other observed trade characteristics. We first regress the average
number of dealer responses elicited by a particular customer, on that customer’s average inquiry size and fractions of
requests for sell trades and high-yield bonds. We then rank customers into deciles based on residuals of this regression.
“Connected decile 9” is an indicator for the customer being in decile 9, and similarly for other “Connected” indicators.
The baseline category is an odd-lot purchase of an investment-grade bond, with high turnover, during normal times,
for a connected investor (in decile 10), after one failed inquiry.

frictions—that ultimately result in customers making multiple inquiries over the course of several
hours or days before a successful trade occurs. In this section, we dig deeper into the data to shed
light on several likely sources of these trading delays, and to provide guidance for future attempts
to develop micro-foundations for the reduced-form arrival rates we estimated above.

4.1 Searching for a better quote

In 90% of failed inquiries, customers receive at least one (and often more) quotes from dealers on
MKTX. Why do they reject these offers and continue to search? Since bonds with the same CUSIP
are homogeneous products, the obvious answer is that customers continue searching in hopes of
finding a better quote.

To confirm this basic hypothesis, we construct a measure of the “quality” of replies that a
customer receives in response to an inquiry, where quality is defined as the percent deviation of the
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Figure 6. Estimated conditional time to trade from the MLE: MKTX vs. voice
This figure compares the estimated time to trade from Equation (2), conditional on the number of failed inquiries in
MKTX vs. voice for the baseline (the top left panel), and different size categories. The baseline category is an odd-lot
purchase of an investment-grade bond, with high turnover, during normal times, for a connected investor (in decile 10),
after one failed inquiry. Size and connectedness categories are defined in Tables 5 and 8.

best spread in that inquiry relative to the CP+ spread.18 Specifically, for every child order with at

18In the definition of quote quality in Equation (3), “CP+ spread” is defined as (CP+ Ask−CP+ Bid)/(2×CP+ mid),
where “CP+ mid” is the midpoint of the CP+ bid and ask, i.e., (CP+ Ask + CP+ Bid)/2. Moreover, the best spread of
an inquiry for “buy” inquiries is calculated as min𝑑{(dealer𝑑 quoted price−CP+ Mid)/CP+ Mid}, and the best spread
for an inquiry for “sell” inquiries is calculated as min𝑑{(CP+ Mid − dealer𝑑 quoted price)/CP+ Mid}.
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least two inquiries, we define:

quote quality =
CP+ spread − best spread for that inquiry

CP+ spread
. (3)

Table 10 reports the distribution of quote quality across customers’ first inquiries and the
relationship between the quality of the best quote and the probability that the customer accepts.
As expected, customers are more likely to accept when the best offer is a good one, and much
more likely to reject (and, often, continue searching) when the best offer is in the lower deciles
of the quote quality distribution. Specifically, we find that customers trade 90% of the time when
the quality of their first inquiry is in the top decile, and trade only about 36% when the quote
quality is in the bottom decile of the distribution. Of course, average quote quality can differ
systematically across bond and trade characteristics, as well as over time. In Table IA.4 in the
Internet Appendix, we confirm the positive relationship between quote quality and the probability
of acceptance, controlling for a variety of systematic factors.

While these results suggest that customers are more likely to reject low-quality offers, it remains
to be shown that continuing to search yields better offers. To do so, we construct several statistics
intended to measure the extent to which quotes improve (or deteriorate) over the course of a
customer’s search. To start, we consider the sample of all child orders with (exactly) two inquiries
and calculate the difference between the best spread in the second inquiry and the best spread in
the first inquiry. Since smaller spreads are “better,” a negative value indicates that the best spread
improved. Figure 7 plots the distribution of values. We find that the probability that the best offer
improved at the second inquiry, relative to the first inquiry, is 0.61.

An alternative definition of spread improvement restricts the sample to child orders that fail at
the first inquiry but ultimately result in trade on MKTX. For each child order in this sample, we
calculate the difference between the traded spread (relative to the CP+ mid-point price) and the best
offered spread in the first inquiry. We find that 71% exhibit spread improvement, i.e., the fraction
of values that are negative is 0.71.

To provide a quantitative estimate of the average improvement that customers find for each
additional inquiry—controlling for various trade characteristics—we regress this second measure
of spread improvement on the number of inquiries that were made before trade occurred. Table 11
reports that, for each additional inquiry in a traded child order, there is an average spread
improvement of approximately 3 bps relative to the first inquiry. To put this value in context,
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Figure 7. Density of spread improvement
spread improvement is defined as (best spread for the second inquiry − best spread for the first inquiry). The best
spread is calculated as min𝑑{(dealer𝑑 quoted price−CP+ Mid)/CP+ Mid} for “buy” inquiries, and min𝑑{(CP+ Mid−
dealer𝑑 quoted price)/CP+ Mid} for “sell” inquiries. The sample consists of all child orders with 2 inquiries.

in our sample, the mean (median) best spread at the inquiry level is 17 bps (10 bps). Hence, this
spread improvement is significant, amounting to 18% (30%) of the mean (median) in our data.

4.2 The origins of quote dispersion

We established above that there is considerable heterogeneity in the quality of quotes a customer
receives, and that continuing to search can often generate better offers. The next natural question
is: What generates dispersion in offers to begin with? A classic explanation, formalized in
the theoretical model of Burdett and Judd (1983), is that the number of replies to an inquiry is
stochastic.19

To explore this theory further, we first construct the probability distribution over the number of
replies that an inquiry receives. As one can see in Figure 8, there is considerable dispersion. Of
particular importance—from the point of view of the Burdett and Judd (1983) model— is that, in

19According to this theory, since dealers do not know how many other dealers will respond to an inquiry, they face
a trade-off between making a good offer (which will be accepted with high probability, but will yield a low profit) and
making a bad offer (which is unlikely to be accepted, but would yield a large profit). In equilibrium, dealers play mixed
strategies which generates dispersion.
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Figure 8. Probability mass function for the number of dealer responses
This figure shows the probability mass for the total number of dealer responses (disclosed and anonymous) at the
inquiry level.

the data, the following two probabilities are strictly positive: the probability that an inquiry receives
just one offer, and the probability that it receives more than two offers.20

From the customers’ point of view, additional inquiries can elicit responses from “new” dealers,
i.e., dealers that hadn’t responded to previous inquiries. In Figure 9, we plot the probability that a
new dealer responds to inquiry 𝑛, for 𝑛 ≥ 2. As one can plainly see, after the first failed inquiry,
it is highly likely that a second inquiry will generate a reply from a new dealer. Naturally, this
probability declines as the number of failed inquiries increases, albeit relatively slowly.

Finally, linking the two sets of results above, one may wonder whether spread improvement
typically arises because a new dealer responds to an inquiry, or because an “incumbent” dealer
improves their offer after a failed inquiry. We find that, among the set of traded child orders that
exhibit spread improvement, 73% of trades occur with an incumbent dealer (who had replied to a
previous inquiry) and 27% occur with a new dealer. Hence, dealers are indeed varying their offer
strategy over the course of a child order.

20In the model, this is necessary and sufficient for price dispersion. Otherwise, dealers are either monopolist (and
set the monopoly price) or competing à la Bertrand (and set the competitive price).
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Figure 9. Probability of a response from a new dealer
This figure shows the probability that a new dealer responds to a customer inquiry for a given inquiry number in child
orders.

4.3 Dealers’ offer strategy

The results above suggest that dealers reply to inquiries probabilistically and—conditional on
replying to multiple inquiries within a child order—change their offers over the course of a
customer’s search. Why do dealers reply to some inquiries in a child order and not others?
When they reply to multiple inquiries, do their offers improve over time, deteriorate, or stay the
same? We use this final section to explore these questions.

Of course, there are many reasons why a dealer may or may not reply to a particular inquiry. For
one, they could simply be busy. Second, a dealer may not be familiar with a particular bond, and
thus hesitant to make an offer without time to formulate an informed bid or ask.21 Lastly, an obvious
factor in determining whether a dealer responds to an inquiry—and, in particular, responding to a
customer’s request to buy—is the dealer’s ability to fulfill the order, either with her own inventory
or via a quick inter-dealer trade.

21Using TRACE data, Cohen (2022) finds that dealers tend to specialize in the bonds that they trade. Moreover, he
finds suggestive evidence that specialization is based on information; for example, he finds that dealers are more likely
to intermediate two bonds if they are from the same issuer.
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The role of inventory. To test the role that a dealer’s inventory plays in shaping the likelihood
and quality of their reply to a customer inquiry, one would ideally like to directly observe the bonds
that a dealer has on its balance sheet and how they change over time. Unfortunately, currently
available data does not allow for such direct measures. However, we present below indirect
evidence suggesting that the availability of a bond—in particular, whether a dealer has the bond or
can acquire it quickly on the inter-dealer market—is an important determinant of whether a dealer
replies to an inquiry and the terms of trade she offers.

To start, recall from our estimates in Section 3.2 that customers sell bonds significantly faster
than they buy. This asymmetry in trading speed is consistent with the conjecture that inventory
is an important determinant of dealers’ replies, since owning a particular bond is necessary for
a dealer to fulfill a customer-buy inquiry but not a customer-sell inquiry. Digging deeper, we
find that the asymmetry between buying and selling extends to the extensive margin as well: for
example, the probability that an initial inquiry fails when the customer is trying to make a purchase
is significantly higher (32%) than the probability that an initial inquiry fails when the customer is
trying to sell (22%).

Indeed, in Table 12, we show that customer-sell inquiries receive significantly more replies, on
average, than customer-buy inquiries after controlling for other characteristics of the trade (along
with bond, time, customer, and dealer fixed effects). For example, from the first two columns,
customer sell requests receive approximately 1.3 more responses from dealers than buy requests.
Moreover, the estimates in columns (3) and (4) of Table 12 reveal that, ceteris paribus, inquiries for
larger quantities get fewer replies as well. Finally, and perhaps most interestingly, we find that this
negative relationship between requested trade size and the number of replies is more pronounced
for customer-buys; that is, a customer request to purchase a large amount has a more negative effect
on the number of replies, relative to a customer request to sell.22 To the best of our knowledge,
these facts are new to the literature, and they are also consistent with the conjecture that inventory
considerations play an important role in shaping outcomes in the corporate bond market.23

To further explore this conjecture, we use the enhanced version of the TRACE data to construct
a measure of dealers’ excess inventory holdings of a particular bond. Intuitively, one might expect

22In columns (2) and (3) of Table 12, the regression coefficient for log(Size) gives the marginal effect of increasing
size for buy orders, while the sum of the coefficients on log(Size) and log(Size) × Sell gives the marginal effect of
increasing size for sell orders. Hence, if the coefficient on the interaction term is positive, the negative impact of size
on number of replies is larger for buy than sell requests.

23For a recent theoretical model of OTC trade highlighting the importance of inventory, see Cohen, Kargar, Lester,
and Weill (2023).
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that dealers’ offers to sell a bond would improve when the dealer sector is holding a relatively
large amount of the bond, and deteriorate when inventory in the dealer sector shrinks. To test this
hypothesis, we define a measure of excess dealer inventory for a given bond as:

Excess inventory =
Current inventory − Moving avg. of inventory over the last 120 days

Moving std. dev. of inventory over the last 120 days
(4)

Tables 13 and 14 report the relationship between the number and the quality of dealers’ replies,
respectively, and our measure of excess inventory.24 From Table 13, we see that the number of
dealer replies are larger for customer-buy trades and smaller for customer-sell trades when dealer
excess inventories are high. For instance, the coefficient from the Poisson regression in column (4)
of Table 13 implies that a one unit increase in our measure of excess inventory is associated
with a 4.7% (= 𝑒0.0462 − 1) increase in the number of responses to a customer-buy inquiry and
approximately a 2.3% (= 𝑒0.0462−0.0699 − 1) decrease in the number of responses to a customer-sell
inquiry.

In Table 14, we see that dealers make better offers for customer buy (sell) orders when excess
inventory is high (low), both at the inquiry and child order levels (in columns 1 and 2). For
instance, the coefficient from column (4) of Table 14 implies that a one unit increase in our measure
of excess inventory is associated with a 2.3 bps decrease in the best offered spread at the inquiry
level to a customer-buy inquiry and approximately a 1 bps increase in the best offered spread to a
customer-sell inquiry.25

Duration dependence. Our estimates of arrival rates in Section 3.2 indicate that time to trade
is positively related to the number of failed inquiries in a child order, i.e., that the expected time
before a successful trade from the moment inquiry 𝑛 is placed is less than the expected time to trade
starting at the (𝑛 + 1)𝑡ℎ inquiry, for 𝑛 ∈ N. One possible explanation of this finding is that dealers
alter their behavior over the course of a child order—perhaps they become less likely to reply or
the quality of their replies deteriorates. For example, dealers’ could change their bidding behavior
because of information leakage, as noted by Hendershott and Madhavan (2015), or because they

24In Internet Appendix IA.1, we provide a more detailed explanation of how we calculate our measure of dealer
excess inventory.

25In Figure IA.1 in the Internet Appendix, we show that dealer excess inventories have a corresponding impact
on the time-to-trade. We rank inquiries based on a measure of “trade capacity”: high trade capacity means either
high excess dealer inventory for customer purchases or low dealer excess inventory for customer sales. We show that
inquiries with higher trade capacity trade faster, though the economic magnitude of the effect is modest.
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learn that the customer was not able to elicit competitive offers, as in the “ringing-phone curse”
described in Zhu (2011).

However, an equally plausible alternative is that the relationship between time to trade and
the number of failed inquiries derives from unobserved heterogeneity across child orders, and that
dealers do not actually change their behavior over the course of a customer’s search. For example, if
child orders differed according to an unobserved characteristic—including the customers’ urgency
to trade or their expectations regarding dealers’ replies—then they would also differ according to
the customers’ reservation price, and hence the time to trade.

To tell these two hypotheses apart, we study the dependence of outcome variables on the number
of failed inquiries in two ways: controlling for observed trade characteristics and controlling for
child-order fixed effects. If unobserved child order characteristics explain the dependence of
outcome variables on the number of failed inquiries, then the dependence should disappear after
controlling for child order fixed effects. Indeed, when we control for child order fixed effects, we
keep all child order characteristics fixed, whether they are observed or not.

Table 15 shows the Poisson regression results when the outcome variable is the number of
dealer responses. In column (1), we control for observed trade characteristics. We find that holding
all observed trade characteristics constant, increasing the number of inquiries from 1 to 2, reduces
the number of dealer responses by approximately 27% (= 1 − 𝑒−0.311). Second, in column (2),
we use child order fixed effects instead of trade characteristics. Under this specification, changing
the number of inquiries has little impact on the number of dealer responses: in fact, increasing
the number of inquiries from 1 to 2 actually increases the number of dealer responses by 3.7%
(= 1 − 𝑒−0.0361). Hence, the results in Table 15 provide evidence in favor of the hypothesis that,
after controlling for the unobserved characteristics of child orders, the number of replies to an
inquiry is largely independent of the number of previous inquiries.

In Table 16, we repeat this regression but for another dependent variable: the spread (trade
execution cost) of traded inquiries. As discussed in Section 2, we measure execution cost as
a markdown or markup relative to the CP+ benchmark provided by MKTX.26 The evidence in
column (1) suggests that spreads rise as the number of inquiries increases. However, when we
control for child order fixed effects, in column (8), we obtain a very different picture: the spreads of

26As an alternative measure, we also compute the trading cost measure in Hendershott and Madhavan (2015), which
uses the last inter-dealer trade as the reference price for a given bond instead of CP+. Results remain qualitatively
similar using this alternative trade execution cost measure.
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traded inquiries are much more stable as the number of inquiries within a child order changes and,
if anything, go slightly in the opposite direction. To better understand the characteristics of a child
order that are being captured by these fixed effects, columns (2) through (7) successively control
for customer, bond, issuer, and time fixed effects, along with various interactions. As one can see
from column (7), child order fixed effects are not a proxy for simply the customer, the bond, the
issuer, or the time when the inquiry was submitted; instead, they appear to capture the state of a
particular customer attempting to trade a particular bond at a particular point in time.

These regression results suggest that the trading environment does not change significantly over
the course of a child order with multiple inquiries, despite the fact that several outcome variable
appear to depend on the number of failed inquiries in the raw data. This finding suggests that either
there is minimal learning by customers and/or dealers over the course of a child order search, or
that whatever information is revealed has offsetting effects on dealers’ offer-making strategies.

5 Conclusion

In this paper, we use data from a leading electronic trading platform to provide new and direct
empirical evidence about search frictions in the OTC market for corporate bonds. We start from
the observation that when a customer’s inquiry on the platform fails to trade, the same customer
often returns to the market shortly after to make subsequent inquiries for the same quantity of
the same bond. We argue that the resulting sequence of repeated inquiries sheds light on the
customers’ sequential search process. We estimate that, after a failed inquiry, it takes customers
between two and three days to trade. We show that this time to trade depends systematically on
trade characteristics and trading venue (electronic vs. voice).

Our analysis brings new insights into the economic mechanisms that lead to trading delays in
OTC markets by examining the behavior of customers and dealers throughout the search process. We
find that customers who reject an offer and continue to search typically achieve spread improvements.
Furthermore, our findings indicate that fluctuations in dealers’ inventory holdings are a significant
factor contributing to changes in both the quantity and quality of dealer quotes. We also show that
customers learning about the distribution of offers contributes to trading delays. Lastly, we provide
evidence consistent with unobserved characteristics being a likely reason for the dependence of
outcome variables on the number of prior failed attempts to trade.

Overall, our estimates can serve as useful inputs into future quantitative applications of search
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models while also providing guidance for future theoretical explorations of the micro-foundations
of search frictions in OTC markets.

Looking forward, several unique aspects of the MKTX data would allow us to study a number
of additional, important questions. For one, since the data allows us to follow (anonymized)
customers over time—which is not possible in other commonly used data sets collected from U.S.
OTC markets—we can explore how heterogeneity in customers’ observable characteristics affects
their search behavior and dealers’ responses. For example, one could study whether customers who
appear “sophisticated” (e.g., in the sense that they trade frequently or have permanent price impact)
get better or worse replies from dealers. In the same vein, our ability to track dealers over time
would also allow us to better understand the probability and quality of a dealer’s reply to an inquiry;
again, note that such statistics are simply impossible to derive without observing successful and
unsuccessful RFQs.

Since we focused primarily on child orders in the current paper—in order to understand the
search process for the most basic unit of trade—a natural next step would be to expand our analysis
to understand parent orders more deeply. For example, we could study the incentives of customers
to split parent orders into child orders, and the outcomes of child orders within a parent order.

Still another source of variation that we did not explore is the difference in outcomes from
inquiries that were fulfilled by a customer’s “disclosed dealers,” who observe their identity, and
those fulfilled by others who could not observe the customer’s identity. More generally, our data
provides fertile ground to test a variety of theoretical results on repeated auctions with imperfect
information, a stochastic number of bidders, learning, and so on. We look forward to studying all
of these topics in future work.
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Table 1. Market share of customer trades on MarketAxess
This table presents the market share of MKTX in the US corporate bond for different trade size and credit rating
categories. MKTX market shares are calculated as the ratio of trading volume executed on MKTX to the total trading
volume observed in TRACE. “Micro size” trades are below $100,000, “Odd lot” trades are between $100,000 and $1
million, “Round lot” trades are between $1 million and $5 million, and “Block trades” exceeds $5 million. Bonds with
a rating of Baa3 (on Moody’s scale) or better are classified as investment-grade (IG), and those with a Moody’s rating
of Ba1 or lower are classified as high-yield (HY).

MKTX market share (%)

All ratings IG HY
(1) (2) (3)

All sizes 16.4 20.5 6.4
Micro 26.8 28.9 19.7
Odd lot 46.7 53.8 31.0
Round lot 18.1 26.3 3.8
Block trade 6.6 8.2 0.6
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Table 2. Responses of a traded and an untraded inquiry
Panel (a) provides dealers’ disclosed responses for a traded inquiry submitted on 08/15/2017 to buy $300,000 of an
11-year, 3.824% investment-grade (USHG) bond issued on 01/17/2017 by Bank of America. The customer received 6
responses, all from dealers, whose anonymized IDs are provided in column (6). Response level (spread over Treasuries
for USHG in MKTX) for each dealer response is reported in column (7). In column (10), the response status “Done”
flags the response that the submitter accepted, the response status “Cover” flags the second best offer, and the response
status “Missed” flags the rest of the responses that the submitter rejected. Panel (b) provides dealer disclosed responses
for an untraded inquiry submitted on 08/17/2017 to buy $490,000 of the same bond in panel (a). The customer
received 9 responses, all from dealers, whose anonymized IDs and response levels are reported in columns (6) and (7),
respectively. The response status “DNT” for this inquiry in column (9) indicates that the inquiry did not trade.

Panel (a): Responses to a traded inquiry on 08/15/2017

Cust. Bond Trade Submit Resp. Dealer Resp. Resp. Resp.
ID CUSIP Side Time ID ID Level Quant. Status
(1) (2) (3) (4) (5) (6) (7) (8) (9)

127 06051GGF0 Buy 08:07:06 1 15420 126.37 300 Missed
127 06051GGF0 Buy 08:07:06 2 16323 129.70 300 Done
127 06051GGF0 Buy 08:07:06 3 11595 128.00 300 Missed
127 06051GGF0 Buy 08:07:06 4 16664 128.05 300 Missed
127 06051GGF0 Buy 08:07:06 5 10392 128.32 300 Missed
127 06051GGF0 Buy 08:07:06 6 12867 128.70 300 Cover

Panel (b): Responses to an untraded inquiry on 08/17/2017

Cust. Bond Trade Submit Resp. Dealer Resp. Resp. Resp.
ID CUSIP Side Time ID ID Level Quant. Status
(1) (2) (3) (4) (5) (6) (7) (8) (9)

127 06051GGF0 Buy 09:56:49 1 15420 125.32 490 DNT
127 06051GGF0 Buy 09:56:49 2 11122 125.70 490 DNT
127 06051GGF0 Buy 09:56:49 3 16377 124.70 490 DNT
127 06051GGF0 Buy 09:56:49 4 12867 125.70 490 DNT
127 06051GGF0 Buy 09:56:49 5 16323 126.20 490 DNT
127 06051GGF0 Buy 09:56:49 6 16664 125.31 490 DNT
127 06051GGF0 Buy 09:56:49 7 10392 125.32 490 DNT
127 06051GGF0 Buy 09:56:49 8 11684 127.01 490 DNT
127 06051GGF0 Buy 09:56:49 9 13910 126.71 490 DNT
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Table 3. Cluster of inquiries
This table lists all inquiries by a particular customer (ID 127) for an 11-year, 3.824% investment-grade bond issued on
01/17/2017 by Bank of America over a six-month period in 2017.

Inquiry Cust. Bond Trade Submit Requested Inquiry Parent Child
ID ID CUSIP Side Time Quantity Traded? Order # Order #
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 127 06051GGF0 Buy 08/15/2017 08:07:06 300 Yes 1 1
2 127 06051GGF0 Buy 08/17/2017 09:56:49 490 No 1 2
3 127 06051GGF0 Buy 08/17/2017 13:57:19 490 Yes 1 2
4 127 06051GGF0 Buy 08/18/2017 08:35:20 290 No 1 3
5 127 06051GGF0 Buy 08/21/2017 08:45:43 290 Yes 1 3
6 127 06051GGF0 Buy 08/23/2017 11:11:38 680 Yes 1 4

Table 4. Parent and child order event statistics
This table reports the fraction of parent and child orders that trade at the first inquiry (“Instant Trade”), the fraction in
which we see multiple attempts to trade (“Multiple Attempts”), and the fraction in which we see a single failed inquiry
without subsequent match in TRACE (“Abandoned”). A child order is considered to have multiple attempts to trade if
it is composed of multiple inquiries on MKTX, or if it has a single failed inquiry that can be matched with a subsequent
TRACE record. A parent order is considered to have multiple attempts to trade if it is composed of multiple child
orders, or if it has unique child order with multiple trading attempts.

Panel (a): Parent orders

Instant Trade Multiple Attempts Abandoned
(1) (2) (3)

Num obs (million) 3.24 1.43 0.79
Fraction total obs 0.59 0.26 0.14
Vol traded ($b of par) 1535 1165 0.00
Fraction of traded vol 0.57 0.43 0.00

Panel (b): Child orders

Instant Trade Multiple Attempts Abandoned
(1) (2) (3)

Num obs (million) 5.66 1.03 1.10
Fraction total obs 0.73 0.13 0.14
Vol traded ($b of par) 2,334 366 0.00
Fraction of traded vol 0.86 0.14 0.00
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Table 5. Trade probabilities.
This table presents raw trade probabilities at the inquiry and child order levels in columns (1) and (2), and trade
probability for child orders at the first inquiry and after failing the first inquiry in columns (3) and (4). “Sell” (“Buy”)
refers to the subsample of customer sales (purchases); “Investment grade” (“High yield”) refers to the subsample
of bond that are rated high-grade (high-yield); “Micro size” refers to the subsample in which the quantity of dealer
response is below $100,000; “Odd lot” refers to the subsample in which the quantity of dealer response is between
$100,000 and $1 million; “Round lot” refers to the subsample in which the quantity of dealer response is between
$1 million and $5 million; “Block trade” refers to the subsample in which the quantity of dealer response exceeds $5
million; “High turnover” refers to the subsample in which the bond’s quarterly turnover is above median; “High amt
outstanding” refers to the subsample in which the bond’s amount outstanding is above the sample median; “Old” refers
to the subsample in which the bond’s age is above the 75th percentile of the distribution. We rank customers into
deciles according to the number of dealer responses they receive, after controlling for inquiry size, fraction of requests
for sell trades and HY bonds. “Connected” refers to the subsample in which the customer is in deciles 7–10, and “Not
connected” refers to the subsample in which the customer is in deciles 1–6.

Prob. Prob. Prob. child Prob. child
inquiry child order order trades order trades after
trades trades at first inquiry failed first inquiry

(1) (2) (3) (4)

Full sample 0.7060 0.8453 0.7430 0.6261
Sell 0.7519 0.8743 0.7853 0.6576
Buy 0.6591 0.8148 0.6984 0.6012
Investment grade (IG) 0.7323 0.8562 0.7692 0.6149
High yield (HY) 0.5899 0.7948 0.6208 0.6537
Micro size 0.7770 0.9040 0.8082 0.6881
Odd lot 0.6398 0.7943 0.6806 0.5866
Round lot 0.6687 0.7815 0.6921 0.5434
Block trade 0.6936 0.7837 0.7061 0.5011
High turnover 0.7106 0.8505 0.7481 0.6353
Low turnover 0.6917 0.8285 0.7260 0.5951
High amt outstanding 0.7620 0.8831 0.7931 0.6724
Low amt outstanding 0.6434 0.8010 0.6844 0.5928
Old 0.6829 0.8297 0.7208 0.6122
Not old 0.7289 0.8605 0.7645 0.6412
Connected (decile ≥ 7) 0.8252 0.9231 0.8456 0.7501
Not connected (decile < 7) 0.4114 0.6392 0.4605 0.4733
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Table 6. Child order event statistics
This table presents summary statistics about child order events. A child order can be viewed as a sequence of events,
as depicted in Figure 1. Each element of the sequence is one of four possible events: an untraded inquiry on MKTX, a
MKTX inquiry with trade, a voice trade, and, if the child order ends without a trade, an exit. By construction, the first
event is always either an inquiry on MKTX, without or with trade. The first row shows the probability of a failed and
successful inquiry on MKTX. The following rows provides the frequency distribution over the next event in the child
order, conditional on the number of failed inquiries to date.

Prob. MKTX Prob. MKTX Prob. voice Prob.
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
First inquiry 0.2529 0.7430 N/A N/A
After 1 failed inquiry 0.1604 0.0964 0.2358 0.5075
After 2 failed inquiries 0.3278 0.1066 0.1568 0.4088
After 3 failed inquiries 0.4545 0.1003 0.1185 0.3267
After 4 failed inquiries 0.5469 0.0919 0.0945 0.2667
After 5 failed inquiries 0.6082 0.0850 0.0832 0.2236
After 6 failed inquiries 0.6552 0.0729 0.0691 0.2028
After 7 failed inquiries 0.6925 0.0627 0.0629 0.1819
After 8 failed inquiries 0.7244 0.0672 0.0582 0.1502
After 9 failed inquiries 0.7534 0.0594 0.0493 0.1378
After 10 failed inquiries 0.7624 0.0571 0.0471 0.1335

Table 7. The unconditional Maximum Likelihood Estimator
This table presents estimation results for the unconditional MLE, where the only control is a constant for event
𝑘 ∈ {1, . . . , 𝐾}, with 𝐾 = 4. Event 𝑘 = 1 is an inquiry on MKTX without trade, 𝑘 = 2 is an inquiry on MKTX with
trade, 𝑘 = 3 is a voice trade, and 𝑘 = 4 is an exit. Robust standard errors as explained in Chapter 12.5.1 of Wooldridge
(2010) are reported in parentheses. Our sample has 𝑁 = 1, 413, 832 observations.

MKTX MKTX voice
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
−3.609∗∗∗ −4.077∗∗∗ −3.367∗∗∗ −2.802∗∗∗

(4.80 × 10−6) (7.47 × 10−6) (4.51 × 10−6) (3.11 × 10−6)

Robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 8. The estimated coefficients of the MLE, part 1: trade characteristic dummies
This table presents the first part of our estimation results for the MLE, conditional on trade characteristics (this table)
and the number of failed inquiries in the child order to date (in Table 9). “Ba1 to Caa3” takes the value of 1 if the
bond’s Moody’s rating is between Ba1 and Caa3; “Ca to C” is similarly defined; “COVID” takes the value of 1 if the
RFQ is submitted in March 2020, and zero otherwise; “High time-to-maturity” takes the value of 1 if the bond’s time
to maturity is above the sample median, and zero otherwise. We rank customers into deciles according to the number
of dealer responses they receive, after controlling for inquiry size, fraction of requests for sell trades and HY bonds.
“Connected decile 9” is an indicator for the customer being in decile 9, and similarly for other “Connected” indicators.
Other bond and trade characteristics are described in Table 5. Robust standard errors as explained in Chapter 12.5.1 of
Wooldridge (2010) are reported in parentheses. Our sample has 𝑁 = 1, 413, 832 observations.

MKTX MKTX voice
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
(Intercept) −4.04∗∗∗ −3.49∗∗∗ −3.25∗∗∗ −2.97∗∗∗
intercept (0.0064) (0.0073) (0.0058) (0.0051)
Sell 0.0988∗∗∗ 0.58∗∗∗ 0.241∗∗∗ −0.0234∗∗∗
Sell (0.0041) (0.0055) (0.0038) (0.0034)
Ba1 to Caa3 0.00794∗ −0.0505∗∗∗ 0.168∗∗∗ −0.164∗∗∗
Ba1 to Caa3 (0.0047) (0.0061) (0.0043) (0.0039)
Ca to C −0.0141 −0.284∗∗∗ 0.427∗∗∗ −0.182∗∗∗
Ca to C (0.053) (0.075) (0.042) (0.043)
Covid −0.172∗∗∗ −0.467∗∗∗ −0.249∗∗∗ −0.176∗∗∗
Covid (0.01) (0.013) (0.0081) (0.0077)
Old 0.0066∗ −0.0957∗∗∗ −0.0587∗∗∗ 0.0381∗∗∗
Old (0.0041) (0.0053) (0.0038) (0.0034)
Turnover below median −0.0108∗∗∗ −0.127∗∗∗ −0.0758∗∗∗ 0.13∗∗∗
Turnover below median (0.0045) (0.006) (0.0045) (0.0038)
High time-to-maturity 0.00553∗ 0.0419∗∗∗ −0.0825∗∗∗ 0.0875∗∗∗
high TTM (0.0041) (0.0053) (0.0038) (0.0034)
Low amt outstanding 0.141∗∗∗ −0.282∗∗∗ −0.356∗∗∗ 0.15∗∗∗
Low Amt Out (0.0042) (0.0053) (0.0037) (0.0034)
Micro size 0.023∗∗∗ 0.187∗∗∗ 0.403∗∗∗ −0.262∗∗∗
Micro size (0.0041) (0.0054) (0.0039) (0.0035)
Round lot −0.159∗∗∗ −0.445∗∗∗ −0.0305∗∗∗ 0.363∗∗∗
Round lot (0.0082) (0.011) (0.0081) (0.0063)
Block trade −0.415∗∗∗ −1.26∗∗∗ 0.0611∗∗ 0.531∗∗∗
Block trade (0.031) (0.044) (0.029) (0.023)
Connected decile < 7 −0.0173∗∗∗ −1.74∗∗∗ −0.227∗∗∗ 0.0746∗∗∗
Connected decile below 7 (0.0055) (0.008) (0.0053) (0.0045)
Connected decile 7 0.00634 −1.1∗∗∗ 0.226∗∗∗ 0.0412∗∗∗
Connected decile 7 (0.0066) (0.0087) (0.0063) (0.0054)
Connected decile 8 0.141∗∗∗ −0.713∗∗∗ 0.236∗∗∗ 0.0538∗∗∗
Connected decile 8 (0.0068) (0.0084) (0.0064) (0.0057)
Connected decile 9 0.0662∗∗∗ −0.176∗∗∗ 0.0779∗∗∗ 0.0896∗∗∗
Connected decile 9 (0.0066) (0.0072) (0.0063) (0.0055)

Failed inquiry controls Yes Yes Yes Yes

Robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 9. The estimated coefficient of the MLE, part 2: the failed inquiries dummies
This table presents the second part of our estimation results for the MLE, conditional on trade characteristics (in Table 8)
and the number of failed inquiries in the child order to date (this table). For convenience, we repeat the estimates for
the baseline category, i.e., the intercept from Table 8. Event 𝑘 = 1 is an inquiry on MKTX without trade, 𝑘 = 2 is an
inquiry on MKTX with trade, 𝑘 = 3 is a voice trade, and 𝑘 = 4 is an exit. “Failed 𝑗” takes the value of 1 if the number
of failed inquiries in the child order to date is equal to 𝑗 , and zero otherwise. Robust standard errors as explained in
Chapter 12.5.1 of Wooldridge (2010) are reported in parentheses. Our sample has 𝑁 = 1, 413, 832 observations.

MKTX MKTX voice
inq. w/o trade inq. w trade trade exit

Event (1) (2) (3) (4)
(Intercept) −4.04∗∗∗ −3.49∗∗∗ −3.25∗∗∗ −2.97∗∗∗
intercept (0.0064) (0.0073) (0.0058) (0.0051)
Failed 2 0.516∗∗∗ −0.0574∗∗∗ −0.546∗∗∗ −0.342∗∗∗
failed 2 (0.0052) (0.0072) (0.0055) (0.0046)
Failed 3 0.854∗∗∗ −0.0474∗∗∗ −0.796∗∗∗ −0.565∗∗∗
failed 3 (0.0074) (0.012) (0.01) (0.0081)
Failed 4 1.07∗∗∗ −0.0677∗∗∗ −0.981∗∗∗ −0.761∗∗∗
failed 4 (0.0098) (0.019) (0.017) (0.013)
Failed 5 1.19∗∗∗ −0.0621∗∗∗ −1.07∗∗∗ −0.919∗∗∗
failed 5 (0.012) (0.026) (0.024) (0.019)
Failed 6 1.34∗∗∗ −0.108∗∗∗ −1.17∗∗∗ −0.96∗∗∗
failed 6 (0.015) (0.036) (0.035) (0.026)
Failed 7 1.39∗∗∗ −0.236∗∗∗ −1.19∗∗∗ −1.08∗∗∗
failed 7 (0.019) (0.049) (0.044) (0.035)
Failed 8 1.47∗∗∗ −0.0579 −1.27∗∗∗ −1.37∗∗∗
failed 8 (0.021) (0.056) (0.059) (0.049)
Failed 9 1.57∗∗∗ −0.239∗∗∗ −1.5∗∗∗ −1.41∗∗∗
failed 9 (0.025) (0.073) (0.081) (0.061)
Failed 10 1.77∗∗∗ −0.228∗∗∗ −1.43∗∗∗ −1.37∗∗∗
failed 10 (0.014) (0.044) (0.046) (0.034)

Trade char. controls Yes Yes Yes Yes

Robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 10. Quote quality for the first inquiry in child orders
In this table, we sort child orders into deciles by the “quote quality” of the first inquiry, defined in Equation (3), and
report average quote quality and trade probabilities. Quote quality is winsorized at the 5% and 95% levels.

Decile Quote quality Trade probability

10 3.314 0.900
9 1.543 0.897
8 0.536 0.881
7 -0.202 0.860
6 -0.879 0.831
5 -1.597 0.794
4 -2.464 0.739
3 -3.689 0.660
2 -5.891 0.540
1 -11.319 0.360
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Table 11. spread improvement relative of the first inquiry
This table reports the estimates of regressing “spread improvement” on the number of inquiries in child orders. In
column (1), we include trade characteristics described in Tables 5 and 8 and year-month fixed effects. In column (2),
in addition to indicators for inquiry number in child orders, we add year-month and child order fixed effects to control
for unobserved heterogeneity. “spread improvement” is defined as the difference between the spread at the last (traded)
inquiry and the best spread offered at the first inquiry, for all traded child orders with > 1 inquires. As discussed
in Section 2, we measure execution costs as a markdown or markup relative to the benchmark provided by MKTX,
called Composite+. The sample includes all child orders submitted by customers that result in trade, have at least
two inquiries, and get a response on their first inquiry. Clustered standard errors at the customer level are shown in
parentheses.

Dependent Variable: spread improvement
Model: (1) (2) (3) (4)

Variables
Number of inquiries -3.267∗∗∗ -3.015∗∗∗ -2.866∗∗∗ -2.826∗∗∗

(0.5626) (0.5522) (0.4843) (0.4822)

Bond & Trade controls Yes Yes Yes Yes
Customer controls Yes

Fixed-effects
year-month Yes Yes Yes Yes
customer Yes Yes Yes
bond Yes Yes
dealer Yes

Fit statistics
Observations 107,429 107,429 107,429 107,429
R2 0.12129 0.15177 0.28545 0.29322
Within R2 0.09703 0.07240 0.02850 0.02766

Clustered (customer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 12. Number of dealer responses: effect of order size and trade direction
This table reports the OLS regression estimates for the impact of trade side (buy vs. sell) and requested quantity
(size) on the number of responses received from dealers. Clustered standard errors at the customer level are shown in
parentheses.

Dependent Variable: number of responses
Model: (1) (2) (3) (4)

Variables
Sell 1.281∗∗∗ 1.340∗∗∗ 0.2801∗∗∗ 0.4836∗∗∗

(0.0500) (0.0550) (0.1085) (0.1077)
log(Size) -0.3484∗∗∗ -0.3430∗∗∗

(0.0245) (0.0275)
Sell × log(Size) 0.1939∗∗∗ 0.1636∗∗∗

(0.0233) (0.0226)

Fixed-effects
day Yes Yes Yes Yes
customer Yes Yes Yes Yes
dealer Yes Yes Yes Yes
bond Yes Yes

Fit statistics
Observations 8,365,989 8,365,989 8,365,989 8,365,989
R2 0.40195 0.61298 0.41074 0.62170
Within R2 0.03654 0.05927 0.05071 0.08047

Clustered (customer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 13. Number of dealer responses and excess dealer inventories
This table presents Poisson regression estimates for number of dealer responses on the inquiry number in child orders,
dealer excess inventory, defined in Equation (4), and its interaction with an indicators for a sell trade. “Inquiry 𝑗” takes
the value of 1 if it is the 𝑗 th inquiry in the child order. In columns (1) and (2) we include bond and trade characteristics
described in Tables 5 and 8. In columns (3) and (4), we control for the unobserved child order characteristics by adding
child order fixed effects to the regression. The sample includes child orders that have at least two inquiries and excludes
inquiries submitted by dealers. Clustered standard errors at the customer level are shown in parentheses.

Dependent Variable: number of responses
Model: (1) (2) (3) (4)

Variables
Inquiry 2 0.0287∗∗∗ 0.0285∗∗∗ 0.0308∗∗∗ 0.0305∗∗∗

(0.0040) (0.0040) (0.0041) (0.0041)
Inquiry 3 -0.0139∗ -0.0130 0.0526∗∗∗ 0.0519∗∗∗

(0.0080) (0.0080) (0.0074) (0.0073)
Inquiry 4 -0.0310∗∗ -0.0297∗∗ 0.0618∗∗∗ 0.0606∗∗∗

(0.0131) (0.0130) (0.0095) (0.0094)
Inquiry 5 -0.0342∗ -0.0328∗ 0.0723∗∗∗ 0.0707∗∗∗

(0.0183) (0.0182) (0.0150) (0.0150)
Inquiry 6 -0.0313 -0.0297 0.0800∗∗∗ 0.0780∗∗∗

(0.0191) (0.0191) (0.0158) (0.0157)
Inquiry 7 -0.0331 -0.0317 0.0867∗∗∗ 0.0842∗∗∗

(0.0212) (0.0213) (0.0157) (0.0156)
Inquiry 8 -0.0305 -0.0296 0.0905∗∗∗ 0.0874∗∗∗

(0.0199) (0.0199) (0.0212) (0.0212)
Inquiry 9 -0.0353 -0.0343 0.0887∗∗∗ 0.0848∗∗∗

(0.0247) (0.0250) (0.0224) (0.0226)
Inquiry ≥ 10 -0.0340 -0.0334 0.0985∗∗∗ 0.0925∗∗∗

(0.0210) (0.0213) (0.0246) (0.0242)
Dealer excess inventory 0.0311∗∗∗ 0.0462∗∗∗

(0.0017) (0.0028)
Dealer excess inventory × Sell -0.0547∗∗∗ -0.0699∗∗∗

(0.0037) (0.0061)

Bond & trade controls Yes Yes

Fixed-effects
customer Yes Yes
bond Yes Yes
issuer Yes Yes
year-month Yes Yes Yes Yes
child order Yes Yes

Fit statistics
Observations 968,886 968,601 969,477 969,188
Squared Correlation 0.56289 0.56502 0.90485 0.90501
Pseudo R2 0.21306 0.21408 0.34781 0.34787
BIC 4,221,108.2 4,214,780.9 8,965,014.4 8,962,772.8

Clustered (customer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 14. Spread and excess dealer inventories
This table presents estimates for regressing trade execution costs on the inquiry number in child orders, dealer excess
inventory, defined in Equation (4), and its interaction with an indicators for a sell trade. “Inquiry 𝑗” takes the value of
1 if it is the 𝑗 th inquiry in the child order. In columns (1) and (2) we include bond and trade characteristics described
in Tables 5 and 8. In columns (3) and (4), we control for the unobserved child order characteristics by adding child
order fixed effects to the regression. As discussed in Section 2, we measure execution costs as a markdown or markup
relative to the benchmark provided by MKTX, called Composite+. The sample includes child orders that have at least
two inquiries and excludes inquiries submitted by dealers. Clustered standard errors at the customer level are shown in
parentheses.

Dependent Variable: inquiry best spread
Model: (1) (2) (3) (4)

Variables
Inquiry 2 -5.768∗∗∗ -5.764∗∗∗ -5.445∗∗∗ -5.390∗∗∗

(0.5596) (0.5602) (0.6624) (0.6596)
Inquiry 3 -4.470∗∗∗ -4.517∗∗∗ -8.081∗∗∗ -7.936∗∗∗

(0.4345) (0.4387) (1.130) (1.125)
Inquiry 4 -4.322∗∗∗ -4.388∗∗∗ -9.927∗∗∗ -9.701∗∗∗

(0.2893) (0.2919) (1.498) (1.486)
Inquiry 5 -3.955∗∗∗ -4.020∗∗∗ -10.99∗∗∗ -10.62∗∗∗

(0.4951) (0.4882) (1.808) (1.784)
Inquiry 6 -3.465∗∗∗ -3.538∗∗∗ -11.20∗∗∗ -10.83∗∗∗

(0.4608) (0.4471) (2.075) (2.056)
Inquiry 7 -2.872∗∗∗ -2.909∗∗∗ -11.10∗∗∗ -10.59∗∗∗

(0.6680) (0.6517) (2.352) (2.326)
Inquiry 8 -3.090∗∗∗ -3.147∗∗∗ -10.96∗∗∗ -10.40∗∗∗

(0.8697) (0.8593) (2.692) (2.672)
Inquiry 9 -5.135∗∗∗ -5.201∗∗∗ -12.99∗∗∗ -12.40∗∗∗

(0.8155) (0.8160) (2.852) (2.836)
Inquiry ≥ 10 -3.282∗∗∗ -3.314∗∗∗ -12.40∗∗∗ -11.54∗∗∗

(0.9341) (0.9018) (3.215) (3.252)
Dealer excess inventory -1.646∗∗∗ -2.281∗∗∗

(0.1250) (0.2723)
Dealer excess inventory × Sell 2.296∗∗∗ 3.317∗∗∗

(0.1927) (0.2906)

Bond & trade controls Yes Yes

Fixed-effects
customer Yes Yes
bond Yes Yes
day Yes Yes Yes Yes
child order Yes Yes

Fit statistics
Observations 902,979 902,738 903,548 903,303
R2 0.34366 0.34489 0.80506 0.80516
Within R2 0.09393 0.09565 0.07582 0.07606

Clustered (customer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

54



Table 15. Poisson model for the number of dealer responses
This table presents Poisson regression estimates for number of dealer responses on indicators for the inquiry number in
child orders. “Inquiry 𝑗” takes the value of 1 if it is the 𝑗 th inquiry in the child order. In column (1) we include trade
characteristics described in Tables 5 and 8. In column (2), we control for the unobserved child order characteristics by
adding child order fixed effects to the regression. The sample excludes inquiries submitted by dealers.

Dependent Variable: number of dealer responses
Model: (1) (2)

Variables
(Intercept) 1.903∗∗∗

(0.0003)
Inquiry 2 -0.3110∗∗∗ 0.0361∗∗∗

(0.0008) (0.0006)
Inquiry 3 -0.4241∗∗∗ 0.0607∗∗∗

(0.0016) (0.0012)
Inquiry 4 -0.4724∗∗∗ 0.0670∗∗∗

(0.0027) (0.0019)
Inquiry 5 -0.4799∗∗∗ 0.0812∗∗∗

(0.0038) (0.0026)
Inquiry 6 -0.4990∗∗∗ 0.0867∗∗∗

(0.0051) (0.0034)
Inquiry 7 -0.5211∗∗∗ 0.0837∗∗∗

(0.0066) (0.0044)
Inquiry 8 -0.5163∗∗∗ 0.1017∗∗∗

(0.0081) (0.0053)
Inquiry 9 -0.5156∗∗∗ 0.1065∗∗∗

(0.0097) (0.0064)
Inquiry ≥ 10 -0.4973∗∗∗ 0.1055∗∗∗

(0.0055) (0.0069)

Trade char. controls Yes

Fixed-effects
child order Yes

Fit statistics
Observations 9,455,325 9,108,063
Squared Correlation 0.33738 0.99172
Pseudo R2 0.14526 0.36693
BIC 45,117,005.9 165,520,283.0

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table 16. Unobserved heterogeneity: Trade execution cots
This table reports the estimates of regressing inquiry spreads on indicators for inquiries in child orders. In column (1),
we include trade characteristics described in Tables 5 and 8 and year-month fixed effects. In column (2), in addition to
indicators for inquiry number in child orders, we add year-month and child order fixed effects to control for unobserved
heterogeneity. As discussed in Section 2, we measure execution costs as a markdown or markup relative to the
benchmark provided by MKTX, called Composite+. Clustered standard errors at the customer level are shown in
parentheses.

Dependent Variable: best spread
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Inquiry 2 6.031∗∗∗ 4.577∗∗∗ 4.645∗∗∗ 4.887∗∗∗ 5.283∗∗∗ 1.764∗∗∗ -0.5204∗∗ -5.318∗∗∗

(0.5350) (0.5829) (0.6223) (0.5601) (0.4656) (0.4072) (0.2515) (0.6117)
Inquiry 3 8.539∗∗∗ 6.559∗∗∗ 6.518∗∗∗ 7.065∗∗∗ 7.351∗∗∗ 2.298∗∗∗ -1.097∗∗ -7.867∗∗∗

(1.100) (1.046) (1.211) (1.047) (0.9341) (0.6119) (0.4783) (1.022)
Inquiry 4 8.337∗∗∗ 6.486∗∗∗ 6.198∗∗∗ 7.117∗∗∗ 7.072∗∗∗ 1.827∗∗ -2.067∗∗∗ -9.640∗∗∗

(1.655) (1.555) (1.889) (1.521) (1.412) (0.8449) (0.5912) (1.392)
Inquiry 5 8.029∗∗∗ 6.448∗∗∗ 6.019∗∗∗ 7.193∗∗∗ 6.894∗∗∗ 1.689∗ -2.550∗∗∗ -10.59∗∗∗

(2.056) (1.818) (2.318) (1.782) (1.778) (1.003) (0.8368) (1.709)
Inquiry 6 7.750∗∗∗ 6.273∗∗∗ 5.678∗∗ 7.430∗∗∗ 6.575∗∗∗ 1.634∗ -2.969∗∗∗ -10.82∗∗∗

(2.290) (1.991) (2.605) (1.904) (1.891) (0.9102) (1.004) (2.039)
Inquiry 7 7.018∗∗∗ 5.984∗∗∗ 5.104∗ 7.289∗∗∗ 5.869∗∗∗ 1.576∗ -2.981∗∗∗ -10.57∗∗∗

(2.435) (2.102) (2.787) (1.917) (2.027) (0.8794) (1.091) (2.353)
Inquiry 8 5.883∗∗ 5.312∗∗∗ 4.038 6.947∗∗∗ 5.021∗∗∗ 1.778∗∗ -2.466∗ -9.984∗∗∗

(2.329) (1.926) (2.674) (1.705) (1.931) (0.8509) (1.268) (2.687)
Inquiry 9 3.337 2.852 1.523 4.995∗∗∗ 2.756 0.0791 -4.280∗∗∗ -11.66∗∗∗

(2.186) (1.920) (2.812) (1.783) (1.803) (0.8365) (1.275) (2.869)
Inquiry ≥ 10 4.463∗∗ 3.581∗∗ 1.528 7.157∗∗∗ 3.820∗∗ 1.961∗∗∗ -3.070∗∗ -10.05∗∗∗

(2.104) (1.818) (2.810) (1.696) (1.772) (0.7102) (1.212) (3.079)

Trade char. controls Yes Yes Yes Yes Yes Yes Yes

Fixed-effects
yearmon Yes Yes Yes Yes
customer Yes Yes
bond Yes
issuer Yes
customer-yearmon Yes
issuer-yearmon Yes
customer-issuer-yearmon Yes
customer-bond-yearmon Yes
child order Yes

Fit statistics
Observations 7,244,316 7,244,316 7,244,316 7,244,316 7,244,316 7,244,316 7,244,316 7,244,316
R2 0.17731 0.25053 0.21075 0.21559 0.23203 0.53163 0.72244 0.95995
Within R2 0.16438 0.07363 0.08300 0.11253 0.11123 0.06916 0.06167 0.09171

Clustered (customer) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Appendix

A More on the McCall (1970) Model of Section 3.1

A.1 Comparative statics for the reservation markdown

Recall that the reservation markdown of a seller is the unique solution of

𝑚★ =
𝑐

𝑟 + 𝛾 − 𝜆

𝑟 + 𝛾

∫ 𝑚★

0
𝐹 (𝑚) 𝑑𝑚.

The first term in Equation (1), 𝑐/(𝑟 + 𝛾), is the expected present value of the seller’s distress cost.
It represents the monopsony markdown: the maximum markdown a seller would be willing to
accept if she received just one take-it-or-leave-it offer by a dealer, and no offer forever after. The
optimal reservation markdown is less than the monopsony markdown because of the option value
of searching for another offer.

By inspection, one sees that 𝑚★ admits the following comparative statics. It increases with the
distress cost 𝑐, decreases with the interest rate, 𝑟, decreases with the exit rate, 𝛾, decreases with
the inquiry intensity, 𝜆, and increases in response to first-order stochastic dominance shift in the
distribution of the best markdown, 𝐹 (𝑚).

These comparative statics are similar to the one obtained in the classical job-search setting
except for the one with respect to 𝑟 + 𝛾. The reason is that, in our setting, increasing 𝑟 + 𝛾 impacts
the seller’s problem in two ways. First, just as in job-search models, it reduces the option value of
search which, all else equal, increases the reservation markdown. Second, and new to this setting,
it decreases the present value of seller’s distress costs, which decreases the reservation markdown.
The second effect, it turns out, always dominates in our setting.

A.2 Alternative specifications of the exit shock

In the text we interpreted the exit shock as recovery from distress. In the data, the exit of a child
order could arise for other reasons, in particular because the customer updates the quantity she
demands or supplies. In the McCall (1970), this means that the continuation value of exit is not
necessarily equal to the par value of the bond, but to some other value which we denote by 1 − 𝑚̂.
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The HJB equation becomes

𝑟𝑉 = 𝑟 − 𝑐 + 𝜆
∫

max{1 − 𝑚 −𝑉, 0} 𝑑𝐹 (𝑚) + 𝛾(1 − 𝑚̂ −𝑉).

The optimal trading strategy of the customer remains characterized by a reservation markdown
characterized by the equation:

𝑚★ =
𝑐 + 𝛾𝑚̂
𝑟 + 𝛾 − 𝜆

𝑟 + 𝛾

∫ 𝑚★

0
𝐹 (𝑚) 𝑑𝑚.

In particular, this shows that the competing risk bias does not depend on the nature of the exit
shock. All that matters is that exit censors the sample of successful child orders.

A.3 Heterogeneity

As in the main body of the paper, assume that heterogeneity in child order is summarized by the
one dimensional type-variable 𝑥 ∈ [𝑥, 𝑥]. Assume that, an any point in time, there is an inflow
𝑑𝜙(𝑥) of type-𝑥 child orders in the market. Then, the measure of type-𝑥 child orders with 𝑛 ≥ 0
failed inquiries satisfies the inflow-outflow equations:

𝑛 = 0 : 𝑑𝜙(𝑥) = 𝑑𝜇(𝑥 | 0)
(
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

)
𝑛 ≥ 1 : 𝜆𝑒 (𝑥)

(∑︁
𝑗

𝑞 𝑗
[
1 − 𝐺𝑒 (𝑚★(𝑥) | 𝑥)

] 𝑗 )
𝑑𝜇(𝑥 | 𝑛 − 1)

= 𝑑𝜇(𝑥 | 𝑛)
(
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

)
.

The left-hand side is the inflow: for example, in the second equation, it is composed of all those
customers who make inquiries on the trading platform but fail to trade. Correspondingly, the right-
hand side is the outflow: in the second equation, it is composed of all investors who make inquiries
on the trading platform, trade on the voice market, or exit. Taken together, these inflow-outflow
equations imply:

𝑑𝜇(𝑥 | 𝑥) = 𝜋1(𝑥)𝑛𝑑𝜇(𝑥 | 0) where 𝜋1(𝑥) ≡
𝜆𝑒 (𝑥)

(∑
𝑗 𝑞 𝑗

[
1 − 𝐺𝑒 (𝑚★(𝑥) | 𝑥)

] 𝑗 )
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

, (5)
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and 𝑑𝜇(𝑥 | 0) = 𝑑𝜙(𝑥)/
(
𝜆𝑒 (𝑥) + 𝜆𝑣 (𝑥)𝐺𝑣 (𝑚★(𝑥) | 𝑥) + 𝛾(𝑥)

)
. According to (5), the measure of

type-𝑥 child orders with 𝑛 failed inquiries declines with 𝑛 geometrically. The geometric coefficient
is simply the probability of failing an inquiry on MarketAxess, in the child-order tree.

Next we show that the direction of the selection bias depends on the geometric coefficient,
𝜋1(𝑥). Namely, let

𝑑𝐻 (𝑥 | 𝑛) = 𝑑𝜇(𝑥 | 𝑛)∫ 𝑥

𝑥
𝑑𝜇(𝑦 | 𝑛)

denote probability distribution over 𝑥 conditional on 𝑛. We obtain the following Lemma:

Lemma 2 If 𝜋1(𝑥) is an increasing (decreasing) function, then 𝐻 (𝑥 | 𝑛) first-order stochastically
dominates (is first-order stochastically dominated by) 𝐻 (𝑥 | 𝑛 − 1).

Lemma 2 shows that as the number of failed inquiries, 𝑛, increases, the sample of child order
becomes more selected towards those investors who, in their child order tree, fail inquiries on the
trading platform with higher probability. As a result, if 𝑥 is unobservable to the econometrician,
any outcome variable which is monotonically related to 𝑥 will appear to be monotonically related
to the number of failed inquiries.

We prove the Lemma for the case of an increasing 𝜋1(𝑥). We start from the definition of 𝐻:

𝑑𝐻 (𝑥 | 𝑛) = 𝜋1(𝑥) 𝑑𝜇(𝑥 | 𝑛 − 1)∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝜇(𝑦 | 𝑛 − 1)

=
𝜋1(𝑥) 𝑑𝐻 (𝑥 | 𝑛 − 1)∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝐻 (𝑦 | 𝑛 − 1)

where the first equality follows from the recursion 𝑑𝜇(𝑥 | 𝑛) = 𝜋1(𝑥) 𝑑𝜇(𝑥 | 𝑛 − 1), and the
second equality follows from dividing both the numerator and the denominator by

∫ 𝑥

𝑥
𝑑𝜇(𝑥 | 𝑛−1).

Therefore:

sign (𝐻 (𝑥 | 𝑛) − 𝐻 (𝑥 | 𝑛 − 1))

= sign
©­­«
∫ 𝑥

𝑥
𝜋1(𝑦) 𝑑𝐻 (𝑦 | 𝑛 − 1)∫ 𝑥

𝑥
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1)

−
∫ 𝑥

𝑥

𝑑𝐻 (𝑦 | 𝑛 − 1)
ª®®¬

= sign

(∫ 𝑥

𝑥

[
𝜋1(𝑦) −

∫ 𝑥

𝑥

𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1)
]
𝑑𝐻 (𝑦 | 𝑛 − 1)

)
.
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Recall that 𝜋1(𝑦) is strictly increasing. This implies that 𝜋1(𝑦) −
∫ 𝑥

𝑥
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛) is strictly

increasing as well, negative when 𝑦 = 𝑥, and positive when 𝑦 = 𝑥. It follows that there is an 𝑥0 such
that 𝜋1(𝑦) −

∫ 𝑥

𝑥
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1) ≤ 0 for all 𝑦 < 𝑥0, and ≥ 0 for all 𝑦 > 𝑥0. Hence,

𝑥 ↦→
∫ 𝑥

0
𝑑𝐻 (𝑦 | 𝑛 − 1)

[
𝜋1(𝑦) −

∫ 𝑥

0
𝜋1(𝑧) 𝑑𝐻 (𝑧 | 𝑛 − 1)

]
is first decreasing and then increasing. Since this function is obviously equal to zero at the upper
bound of its domain, 𝑥 = 𝑥, it follows that 𝐻 (𝑥 | 𝑛) ≤ 𝐻 (𝑥 | 𝑛 − 1), and we have established
first-order stochastic dominance.
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Internet Appendix

IA.1 Dealer Excess Inventory Measurement

In this section, we discuss our measure of dealer excess inventory in Equation (4) in more detail.
Let 𝑖𝑏 (𝑡) denote dealers’ inventory of bond 𝑏 at time 𝑡. Moreover, let 𝑒𝑏 (𝑡) denote dealers’ excess
inventory of bond 𝑏 at time 𝑡, which we define as:

𝑒𝑏 (𝑡) ≡
𝑖𝑏 (𝑡) − 𝜇𝑏 (𝑡)

𝜎𝑏 (𝑡)
,

where 𝜇𝑏 (𝑡) is the desired level of inventory and 𝜎𝑏 (𝑡) is the standard deviation of inventory
for bond 𝑏 at time 𝑡. To allow for changes in inventory dynamics over time, we estimate excess
inventory on a rolling basis. Given an estimation window Δ𝑡, an estimator for 𝜇𝑏 (𝑡) is

𝜇̂𝑏 (𝑡;Δ𝑡) =
1
Δ𝑡

∫ 𝑡

𝑡−Δ𝑡
𝑖𝑏 (𝑠)𝑑𝑠,

and an estimator for 𝜎𝑏 (𝑡) is

𝜎̂𝑏 (𝑡;Δ𝑡) =

√︄
1
Δ𝑡

∫ 𝑡

𝑡−Δ𝑡
(𝑖𝑏 (𝑠) − 𝜇̂𝑏 (𝑡;Δ𝑡))2 𝑑𝑠.

Unfortunately, the direct implementation of these estimators is challenging since, to the best of our
knowledge, data on the level of dealer inventory for individual corporate bonds are not available.
However, using transaction records on individual corporate bonds from the TRACE database, it is
possible to measure changes in dealer inventory. With that in mind, let Δ𝑖𝑏 (𝑢, 𝑠) denote the change
in inventory between time 𝑢 and 𝑠, Δ𝑖𝑏 (𝑢, 𝑠) ≡ 𝑖𝑏 (𝑢) − 𝑖𝑏 (𝑠). The enhanced TRACE database
provides information on the time of trades, transaction parties (dealer vs. customer), the side of a
trade (dealer buys vs. dealer sells), and the traded quantities. Letting 𝑆 𝑗 denote the trade side of
transaction 𝑗 , 𝑆 𝑗 ∈ {Dealer buys, Dealer sells, Interdealer transaction}, letting 𝜏𝑗 denote the time
of transaction 𝑗 , and letting 𝑄 𝑗 denote the quantity of the transaction, we calculate the change in
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dealer inventory between 𝑡 < 𝑢 as follows:

Δ𝑖𝑏 (𝑢, 𝑡) =
∑︁

𝑗 |𝑡≤𝜏𝑗≤𝑢

(
I{𝑆 𝑗= Dealer buys} − I{𝑆 𝑗= Dealer sells}

)
𝑄 𝑗 .

Then, it is straightforward to show that our estimators can equivalently be written as:

𝜇̂𝑏 (𝑡;Δ𝑡) = Δ𝜇̂𝑏 (𝑡,Δ𝑡) + 𝑖𝑏 (𝑡 − Δ𝑡),

𝜎̂𝑏 (𝑡;Δ𝑡) =

√︄
1
Δ𝑡

∫ 𝑡

𝑡−Δ𝑡
(Δ𝑖𝑏 (𝑠, 𝑡 − Δ𝑡) − Δ𝜇̂𝑏 (𝑡;Δ𝑡))2 𝑑𝑠,

where Δ𝜇̂𝑏 (𝑡,Δ𝑡) = 1
Δ𝑡

∫ 𝑡

𝑡−Δ𝑡 Δ𝑖𝑏 (𝑠, 𝑡 −Δ𝑡)𝑑𝑠. As a result, we obtain two equivalent formulations of
the excess inventory estimator:

𝑒𝑏 (𝑡;Δ𝑡) =
𝑖𝑏 (𝑡) − 𝜇̂𝑏 (𝑡;Δ𝑡)

𝜎̂𝑏 (𝑡;Δ𝑡)
=
Δ𝑖𝑏 (𝑡, 𝑡 − Δ𝑡) − Δ𝜇̂𝑏 (𝑡;Δ𝑡)

𝜎̂𝑏 (𝑡;Δ𝑡)
.

The last equality does not involve inventory level, only inventory changes. As a result, we implement
this version of the estimator using available transaction records at the bond level.
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IA.2 Additional Figures and Tables
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Figure IA.1. Estimated conditional time to trade from the MLE: impact of dealer excess inventories
This figure plots the estimated time to trade from Equation (2), conditional on the number of failed inquiries and dealer
trade capacity categories. We rank inquiries based on a measure of “trade capacity”: high trade capacity means either
high excess dealer inventory for customer purchases or low dealer excess inventory for customer sales. We first sort buy
and sell inquiries separately into quintiles based on our measure of dealer excess inventory defined in Equation (4). We
then define an indicator for trade capacity quintile 5 (Q5) as (buy Q5 inventory indicator + sell Q1 inventory indicator),
and similarly for other quintiles. “Trade capacity Q4” is an indicator for inquiries in the 4th quintile of the trade capacity
measure, and similarly for other “trade capacity” quintiles indicators. The baseline category is an odd-lot purchase of
an investment-grade bond, with high turnover, during normal times, for a connected investor, in Q5 of dealer capacity
category, after one failed inquiry.
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Table IA.1. Trade probabilities: inquiry vs. child order level
This table presents logit regression results of whether trade occurs as the dependent variable and indicators for trade
and customer characteristics as independent variables, defined in Tables 5 and 8. Column (1) presents the regression
at the inquiry level for trade on MKTX. The corresponding child order level estimates for trade on MKTX or voice are
presented in column (2). Heteroskedasticity-robust standard-errors are reported in parentheses.

Dependent Variables: inq. is traded child is traded
on MKTX on MKTX/voice

Model: (1) (2)

Variables
(Intercept) 2.231∗∗∗ 3.270∗∗∗

(0.0032) (0.0047)
Micro size 0.3344∗∗∗ 0.5321∗∗∗

(0.0023) (0.0031)
Round lot -0.3437∗∗∗ -0.5465∗∗∗

(0.0040) (0.0050)
Block trade -0.7327∗∗∗ -1.044∗∗∗

(0.0117) (0.0138)
Sell 0.6301∗∗∗ 0.6181∗∗∗

(0.0021) (0.0030)
HY -0.4462∗∗∗ -0.1778∗∗∗

(0.0028) (0.0039)
Covid -0.9289∗∗∗ -0.7719∗∗∗

(0.0063) (0.0083)
Old age -0.1935∗∗∗ -0.2520∗∗∗

(0.0023) (0.0031)
High time-to-maturity -0.0152∗∗∗ -0.1402∗∗∗

(0.0022) (0.0030)
Low turnover -0.2895∗∗∗ -0.3352∗∗∗

(0.0029) (0.0038)
Low amt outstanding -0.6594∗∗∗ -0.7774∗∗∗

(0.0022) (0.0030)
Connected decile < 7 -2.326∗∗∗ -2.240∗∗∗

(0.0029) (0.0038)
Connected decile 7 -0.6024∗∗∗ -0.5286∗∗∗

(0.0041) (0.0062)
Connected decile 8 -1.110∗∗∗ -1.171∗∗∗

(0.0036) (0.0049)
Connected decile 9 -0.2790∗∗∗ -0.3332∗∗∗

(0.0029) (0.0043)

Fit statistics
Observations 6,684,638 6,241,870
Squared Correlation 0.17918 0.11526
Pseudo R2 0.16766 0.16067
BIC 5,772,256.4 3,425,744.2

Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Table IA.2. Summary statistics
This table presents summary statistics for size, bond age and maturity, rating, and trade direction for all child orders
(column 1), all inquiries (column 2), and child orders with at least one failed inquiry (column 3). “Sell” takes the value
of 1 for a sale request, and zero otherwise; “HY” takes the value of 1 if the bond is high-yield, and zero otherwise;
“Dealer-submitted” takes the value of 1 if the inquiry is submitted by a dealer, and zero otherwise.

Child orders Inquiries Child orders
(all) (all) (≥ 1 failed inq.)
(1) (2) (3)

HY 0.17 0.18 0.26
Sell 0.52 0.51 0.42
Dealer-submitted 0.10 0.11 0.23
Size

micro size (< $100k) 0.49 0.48 0.37
odd lot ($100k–1 million) 0.42 0.43 0.52
round lot ($1–5 million) 0.09 0.08 0.10
block trade (> $5 million) 0.01 0.01 0.01

Bond age distribution
Average bond age 3.85 3.91 4.43
< 2 years 0.35 0.34 0.31
2–5 years 0.39 0.39 0.38
5–20 years 0.26 0.27 0.30
> 20 years 0.01 0.01 0.02

Bond maturity distribution
Average maturity 12.43 12.53 13.71
< 2 years 0.002 0.002 0.002
2–5 years 0.07 0.07 0.06
5–20 years 0.73 0.73 0.68
> 20 years 0.20 0.20 0.25

Observations 9,861,143 11,020,815 2,774,478
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Table IA.3. Child orders statistics: Inter-arrival times.
This table presents summary statistics about time between child order events (in business days). A child order can be
viewed as a sequence of events, as depicted in Figure 1. Each element of the sequence is one of four possible events:
an untraded inquiry on MKTX, a MKTX inquiry with trade, a voice trade, and, if the child order ends without a trade,
an exit. Columns (1)–(3) present time, in business days, to an untraded inquiry on MKTX, a MKTX trade, and a trade
on voice across child orders, conditional on the number of failed inquiries to date.

Time to MKTX Time to MKTX Time to
inq. w/o trade inq. w trade voice trade

(1) (2) (3)

After 1 failed inquiry 0.82 0.65 1.04
After 2 failed inquiries 0.87 0.82 1.34
After 3 failed inquiries 0.85 0.85 1.46
After 4 failed inquiries 0.84 0.88 1.53
After 5 failed inquiries 0.82 0.85 1.56
After 6 failed inquiries 0.80 0.87 1.56
After 7 failed inquiries 0.78 0.89 1.63
After 8 failed inquiries 0.77 0.84 1.59
After 9 failed inquiries 0.75 0.86 1.44
After 10 failed inquires 0.72 0.88 1.44
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Table IA.4. Quote quality for the first inquiry and trade probability
This paper present logit regression estimates. The dependent variable is an indicator for whether the inquiry is traded
on MKTX and the main dependent variable is quote quality for the first inquiry in child orders, defined in Equation (3).
In columns (1) and (2) we include bond and trade characteristics described in Tables 5 and 8.

Dependent Variable: inq is traded on MKTX
Model: (1) (2)

Variables
(Intercept) 0.4834∗∗∗

(0.0128)
Quote quality 0.2663∗∗∗ 0.3079∗∗∗

(0.0006) (0.0077)

Bond & trade controls Yes Yes
Customer controls Yes

Fixed-effects
customer Yes
issuer Yes
dealer Yes
year-month Yes

Fit statistics
Observations 6,954,147 7,679,325
Squared Correlation 0.28497 0.43891
Pseudo R2 0.26354 0.39911
BIC 5,277,697.2 5,290,981.4

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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